Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "series model" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Generalization of Linear Rosenstark Method of Feedback Amplifier Analysis to Nonlinear One
Autorzy:
Borys, A.
Zakrzewski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/226780.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
weakly nonlinear amplifiers
nonlinear Rosenstark model
nonlinear distortion analysis
harmonic distortion
constitutive equations
Volterra series
Opis:
Generalization of Linear Rosenstark Method of Feedback Amplifier Analysis to Nonlinear One This paper deals with an extension of the Rosenstark’s linear model of an amplifier to a nonlinear one for the purpose of performing nonlinear distortion analysis. Contrary to an approach using phasors, our method uses the Volterra series. Relying upon the linear model mentioned above, we define first a set of the so-called amplifier’s constitutive equations in an operator form. Then, we expand operators using the Volterra series truncated to the first three components. This leads to getting two representations in the time domain, called in-network and input-output type descriptions of an amplifier. Afterwards, both of these representations are transferred into the multi-frequency domains. Their usefulness in calculations of any nonlinear distortion measure as, for example, harmonic, intermodulation, and/or cross-modulation distortion is demonstrated. Moreover, we show that they allow a simple calculation of the so-called nonlinear transfer functions in any topology as, for example, of cascade and feedback structures and their combinations occurring in single-, two-, nd three-stage amplifiers. Examples of such calculations are given. Finally in this paper, we comment on usage of such notions as nonlinear signals, intermodulation nonlinearity, and on identification of transfer function poles and zeros lying on the frequency axis with related real-valued frequencies.
Źródło:
International Journal of Electronics and Telecommunications; 2014, 60, 1; 48-60
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Quadrature Mapping, Saleh’s Representation, and Memory Models
Autorzy:
Borys, A.
Powiązania:
https://bibliotekanauki.pl/articles/226495.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
AM/AM conversions
AM/PM conversions
quadrature model
Saleh's representation
power amplifiers
Volterra series
memory effect
Opis:
In the literature, Saleh’s description of the AM/AM and AM/PM conversions occurring in communication power amplifiers (PAs) is classified as a representation without memory. We show here that this view must be revised. The need for such revision follows from the fact that the Saleh’s representation is based on the quadrature mapping which, as we show here, can be expanded in a Volterra series different from an usual Taylor series. That is the resulting Volterra series possesses the nonlinear impulse responses in form of sums of ordinary functions and multidimensional Dirac impulses multiplied by coefficients being real numbers. This property can be also expressed, equivalently, by saying that the nonlinear transfer functions associated with the aforementioned Volterra series are complex-valued functions. In conclusion, the above means that the Saleh’s representation incorporates memory effects.
Źródło:
International Journal of Electronics and Telecommunications; 2016, 62, 4; 389-394
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies