Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zbiory danych" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Budowa neuronowych modeli prognostycznych na przykladzie wybranych zagadnien inzynierii rolniczej
Construction of neural forecasting models for example of selected issues in agricultural engineering
Autorzy:
Dejewska, T
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/883707.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zbiory danych
modelowanie
modele prognostyczne
inzynieria rolnicza
sieci neuronowe sztuczne
uczenie sie
Opis:
Celem pracy było omówienie metodyki budowy modeli prognostycznych w oparciu o sztuczne sieci neuronowe. Podczas konstruowania modelu neuronowego realizującego predykcję występują często złożone problemy. Z uwagi na to przybliżono metody pozwalające na poprawny przebieg poszczególnych etapów budowy. Przedstawiono również wartość poznawczą i skuteczność działania tych modeli dla inżynierii rolniczej.
The aim of the following thesis was the description of methods of building of prognostic models with the use of the artificial neural networks. During constructing of neuronal model of prediction, a variety of complex problems may often appear. In consideration of those problems, some methods enabling appropriate course of each of the stages of building the model were presented. Moreover, a cognitive value and effectiveness of working of those models in the agricultural engineering were introduced.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2009, 05; 7-10
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Barwy jako kryterium w neuronowym rozpoznaniu grzybiczego stanu skóry u zwierząt
Colors as a criterion for neural diagnosis of fungal skin in animals
Autorzy:
Dejewska, T.
Boniecki, P.
Jakubek, A.
Zaborowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/883577.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bydlo
choroby skory
bydlo polskie holsztynsko-fryzyjskie
bydlo czarno-biale
bydlo jersey
grzybica skory
barwa skory
zdjecia cyfrowe
komputerowa analiza obrazu
zbiory danych
sieci neuronowe sztuczne
uczenie sie
Opis:
Celem pracy było zbadanie istoty informacji dotyczących barw zakodowanych w obrazie cyfrowym fragmentów skóry bydła domowego w procesie budowy modelu neuronowego. Prace badawcze przeprowadzono w oparciu o trzy rasy bydła domowego: polski holsztyno-fryz, czarno-biała, jersey. Wskazano optymalną topologię sieci, która dokonuje klasyfikacji jedynie na podstawie próbek koloru. Zwrócono także uwagę na wyniki kwalitatywne i możliwości polepszenia jej parametrów jakościowych. Przedstawiono również perspektywy rozbudowy systemu informatycznego do szerszego zastosowania w tej dziedzinie.
The aim of this study was to examine the essence of the information on color encoded in digital image fragments of bovine skin in the construction of neural model. Research basis on three bovine breeds: polish holsztyn-friesian, black and white, jersey. An optimal network topology, which makes a classification bases solely on the color samples has been indicated. Also the notice of the results and possibilities for improving the quality parameters has been taken. The development prospects of a computer system for wider application in this field have been presented.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2011, 02
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Barwy jako kryterium w neuronowym rozpoznaniu stanu grzybiczego skory u zwierzat
Colors as a criterion for neural diagnosis of fungal skin of animals
Autorzy:
Dejewska, T
Boniecki, P.
Jakubek, A.
Zaborowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/883093.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bydlo
choroby skory
bydlo polskie holsztynsko-fryzyjskie
bydlo czarno-biale
bydlo jersey
grzybica skory
zmiany chorobowe
skora zdrowa
barwa skory
zdjecia cyfrowe
komputerowa analiza obrazu
zbiory danych
sieci neuronowe sztuczne
uczenie sie
diagnostyka chorob
Opis:
Celem pracy było zbadanie istoty informacji dotyczących barw, zakodowanych w obrazie cyfrowym fragmentów skóry bydła domowego w procesie budowy modelu neuronowego. Prace badawcze przeprowadzono w oparciu o trzy rasy bydła domowego: polski holsztyno-fryz, czarno-biała, jersey. Wskazano optymalną topologię sieci, która dokonuje klasyfikacji jedynie na podstawie próbek koloru. Zwrócono także uwagę na wyniki kwalitatywne i możliwości polepszenia jej parametrów jakościowych. Przedstawiono równie¿ perspektywy rozbudowy systemu informatycznego do szerszego zastosowania w tej dziedzinie.
The aim of this study was to examine the essence of the information on color encoded in digital image fragments of bovine skin in the construction of neural model. Research based on three bovine breeds: polish holsztyn-friesian, black and white, jersey. An optimal network topology, which makes the classification basing solely on the color of samples, was indicated Also the attention was paid to the results and possibilities for improvement of the qualitative parameters. Prospects of development of the computer system for wider application in this field were also presented
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2010, 05; 11-12
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies