Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieć neuronowa" wg kryterium: Temat


Tytuł:
Autoasocjacyjna sieć neuronowa jako narzędzie do nieliniowej kompresji danych
The artificial neural nerwork as a helping tool in the process of non-linear data compression
Autorzy:
Boniecki, P.
Przybył, J.
Powiązania:
https://bibliotekanauki.pl/articles/336092.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
autoasocjacyjna sieć neuronowa
kompresja danych
artificial neural network
data compression
autoassociative network
Opis:
Sieci autoasocjacyjne to sieci, które odtwarzają wartości wejściowe na swoich wyjściach. Działanie takie zdecydowanie ma sens, ponieważ rozważana sieć autoasocjacyjna posiada w warstwie środkowej (ukrytej) zdecydowanie mniejszą liczbą neuronów niż w warstwie wejściowej czy wyjściowej. Dzięki takiej budowie dane wejściowe muszą przecisnąć się przez swojego rodzaju zwężenie w warstwie ukrytej sieci, kierując się w do wyjścia. Dlatego też, w celu realizacji stawianego jej zadania reprodukcji informacji wejściowej na wyjściu, sieć musi się najpierw nauczyć reprezentacji obszernych danych wejściowych za pomocą mniejszej liczby sygnałów produkowanych przez neurony warstwy ukrytej, a potem musi opanować umiejętność rekonstrukcji pełnych danych wejściowych z tej "skompresowanej" informacji. Oznacza to, że sieć autoasocjacyjna w trakcie uczenia zdobywa umiejętność redukcji wymiaru wejściowych danych.
An autoassociative network is one which reproduces its inputs as outputs. Autoassociative networks have at least one hidden layer with less units than the input and output layers (which obviously have the same number of layers as each other). Hence, autoassociative networks perform some sort of dimensionality reduction or compression on the cases. Dimensionality reduction can be used to pre-process the input data to encode Information in a smaller number of variables. This approach recognizes that the intrinsic dimensionality of the data may be lower than the number of variables. In other words, the data can be adequately described by a smaller number of variables, if the right transformation can be found.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 37-40
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieci neuronowe typu MLP oraz RBF jako narzędzia klasyfikacyjne w analizie obrazu
The neural network type the MLP and RBF as classifying tools in picture analysis
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337163.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
sieć neuronowa MLP
sieć neuronowa RBF
analiza obrazu
identyfikacja neuronowa
model neuronowy
neural network
MLP neural network
RBF neural network
picture analysis
neuronal identification
neuronal model
Opis:
Neuronowa identyfikacja danych obrazowych, ze szczególnym naciskiem na analizę ilościową oraz jakościową, coraz częściej wykorzystywana jest do pozyskiwania oraz zgłębiania wiedzy zawartej w danych empirycznych. Ekstrakcja, a następnie klasyfikacja wybranych cech obrazu, pozawala na wytworzenie informatycznych narzędzi do identyfikacji wybranych obiektów, prezentowanych np. w postaci obrazu cyfrowego. W związku z tym, celowym wydaje się być poszukiwanie nowoczesnych metod wspomagających proces edukacyjny w zakresie konstrukcji oraz eksploatacji modeli neuronowych w kontekście ich wykorzystania w procesie analizy obrazu. Dodatkowym celem pracy było porównanie jakości sieci MLP oraz RBF mające na względzie wskazanie optymalnego instrumentu klasyfikacyjnego.
The neuronal identification of pictorial data, with special emphasis on both quantitative & qualitative analysis, is more frequently utilized to gain & deepen the empirical data knowledge. Extraction & then classification of selected picture features, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. In relationship from this, it seems to be purposeful the search of the modern methods helping educational process in the range of construction as well as exploitation of neuronal models in context of their utilization in picture analysis process. The additional aim of the work was the comparison of neural network of the type MLP and RBF for indication of the optimum classification tool.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 34-39
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja wykorzystania sztucznych sieci neuronowych w procesie oceny jakości pomidorów
The concept of artificial neural networks application in the process of evaluation of the quality of tomatoes
Autorzy:
Zaborowicz, M.
Koszela, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/334162.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
pomidor
jakość
ocena
neural network
evaluation
quality
tomatoes
Opis:
Zwiększenie konkurencyjności oraz wzrost jakości produktów jest jednym z głównych celów producentów branży rolno-spożywczej. Producenci żywności zobowiązani są do przestrzegania norm jakościowych oraz dostarczania produktów zgodnie z zakontraktowaną specyfikacją jakościową. Liderzy rynku chcąc pozostać w czołówce przedsiębiorstw coraz częściej stosują nowoczesne rozwiązania informatyczne wspomagające proces wytwórczy i ocenę jakościową produktu. Złożoność tych procesów wymaga zaprojektowania i wdrażania nowych rozwiązań, wykorzystujących specjalne techniki i metody informatyczne.
Increasing competitiveness and increase of product quality is one of the main objectives of the producers of agrifood sector. Food manufacturers are required to observe quality standards and deliver products in accordance with the spedfications. Leaders of food manufactures wanting to remain at the fore front of companies use modern IT solutions for supporting the production and evaluation of product quality. The complexity of these processes requires the inventing and implementation of new solutions, using special techniques and methods of informatics.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2011, 56, 1; 147-149
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network development for automatic identification of the endpoint of drying barley in bulk
Wykorzystanie sztucznych sieci neuronowcyh do automatycznej identyfikacji zakończenia niskotemperaturowego suszenia jęczmienia
Autorzy:
Olszewski, T.
Ryniecki, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/334303.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sztuczna sieć neuronowa
suszenie niskotemperaturowe
jęczmień
barley
drying
neural network
Opis:
A thesis was proved that it is possible an automatic endpoint determination of drying barley in bulk, 1.2 meter's deep, based on a neural network, using a continuous on-line measurement of atmospheric air temperature and relative humidity, plenum air temperature and grain temperature in selected locations inside the bed - in situations in which drying air temperature and relative humidity change stochastically. The usefulness of individual input variables characterising the process as well as their influence on the quality of the obtained model were analysed. Several different topologies of the developed models were compared and the RBF type networks were selected as the best ones. The developed networks are characterised by a high, ranging from 93.3 to 99.6%, correctness of case assignment to the recognised classes in the course of the identification process and a high capability to generalise the analysed data.
W pracy potwierdzono możliwość automatycznej identyfikacji zakończenia procesu niskotemperaturowego suszenia ziarna jęczmienia w nieruchomej warstwie o grubości 1,2 m z zastosowaniem sztucznej sieci neuronowej. Następujące wielkości były mierzone w sposób ciągły "on-line": temperatura i wilgotność względna powietrza atmosferycznego, temperatura sprężonego powietrza oraz temperatura nasion w wybranych miejscach wewnątrz komory - w sytuacji, w której temperatura powietrza suszącego i wilgotność względna zmieniały się stochastycznie. Przeanalizowano przydatność poszczególnych zmiennych wejściowych charakteryzujących proces jak również ich wpływ na jakość otrzymanego modelu. Porównano również różne topologie otrzymanych sieci. Jako najlepsze wytypowano sieci typu RBF. Znalezione sieci charakteryzowały się dużą (w granicach 93,3-99,6%), poprawnością przypisywania przypadków do rozpoznawanych klas oraz wysokiej zdolności do generalizacji analizowanych danych.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 1; 26-31
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do modelowania procesu emisji amoniaku z pól nawożonych gnojowicą
Artificial neural networks for modelling ammonia emission from field applied slurry manure
Autorzy:
Niżewski, P.
Dach, J.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/288988.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
emisja amoniaku
sieć neuronowa
gnojowica
ammonia emission
neural networks
slurry manure
Opis:
Problem emisji amoniaku z pól nawożonych gnojowicą jest w ostatnich 20 latach przedmiotem wielu badań. Nawożenie gnojowicą jest bowiem jednym z głównych źródeł zanieczyszczenia atmosfery przez amoniak. Warto podkreślić, że w Europie właśnie rolnictwo jest źródłem ponad 80% NH3 emitowanego do atmosfery. W ostatnim czasie różne zespoły badawcze z krajów UE prowadzą doświadczenia mające na celu oszacowanie wielkości emitowanego amoniaku do atmosfery. Działania te skupione są wokół międzynarodowych sieci naukowych, gdzie opracowywane są różne modele pomagające w szacowaniu poziomu emisji amoniaku w poszczególnych krajach.
For the last 20 years the problem of ammonia emission from the fields fertilized with a liquid manure has been a subject of many research. Liquid manure fertilization became one of the main sources of atmospheric ammonia pollution. In Europe the agronomy produces more than 80% of NH3 emitted into the atmosphere. During the last years different scientific teams carried on the research concerning an estimation of ammonia emission size and the factors influencing on this emission. These activities are focused around an international concerted actions where the different models of ammonia emissions are developed for many countries and different conditions.
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 2 (90), 2 (90); 235-242
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja wybranych odmian jabłek oraz suszu marchwi z wykorzystaniem sieci neuronowych typu Kohonena
Classification of selected apples varieties and dried carrots using neural network type kohonen
Autorzy:
Boniecki, P.
Koszela, K.
Przybylak, A.
Powiązania:
https://bibliotekanauki.pl/articles/334443.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
klasyfikacja
jabłko
odmiana
marchew
sieć neuronowa
classification
apple
carrot
variety
neural network
Opis:
Celem badań była analiza zdolności klasyfikacyjnych modelu neuronowego typu Kohonena, uczonego metodą "nie nadzorowaną". Klasyfikacji poddano trzy wyselekcjonowane odmiany jabłek, które często występują w sadach na terenie Polski. Ze względów porównawczych, podobną analizę przeprowadzono w celu identyfikacji jakości suszu warzywnego. Neuronowej klasyfikacji dokonano w oparciu o informację zakodowaną w postaci zbioru cyfrowych obrazów jabłek oraz suszu marchwi. Jako cechy charakterystyczne, stanowiące podstawę do przeprowadzenia klasyfikacji, przyjęto reprezentacje w postaci palety dominujących barw występujących w kolorze owoców i suszu warzywnego oraz wybranych współczynników kształtu.
The purpose of this study was the analysis of ability classification neural model type Kohonen. Classification has been selected three varieties of apples, which often appear in Polish orchards in the area. For purposes of comparison, a similar analysis was performed to identify the quality of dried vegetables. Neural classification was based on the information encoded in the form of a set of digital images apples and dried. As the characteristics feature adopted color and shape of apples and dried carrots.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 1; 11-15
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody prognozowania wybranych zagadnień inżynerii rolniczej z wykorzystaniem sztucznych sieci neuronowych
The methods of predicting the issues of agricultural engineering with the use of artificial neural networks
Autorzy:
Dejewska, T.
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/335271.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
prognoza
artificial neural network
agricultural engineering
predicting
Opis:
Celem pracy było omówienie neuronowych metod prognozowania oraz porównanie ich efektywności w wybranych zagadnieniach inżynierii rolniczej przy użyciu sztucznych sieci neuronowych. Wskazano przy tym topologie sieci, które w rozwiązaniu problemów predykcyjnych charakteryzowały się najlepszą skutecznością.
The aim of the following thesis was the description of chosen methods of the prediction and the comparison of their efficiency in the field of agricultural engineering with the use of artificial neural networks. There were also pointed the typolgies of networks which turned out to be the most effective in the process of solving the prediction problems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 28-31
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interaktywny system edukacyjny wspomagający proces projektowania oraz eksploatacji sztucznych sieci neuronowych w rolnictwie
Interactive education system supporting the use of artificial neural networks in agriculture
Autorzy:
Boniecki, P.
Weres, J.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/289530.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna sieć neuronowa
klasyfikacja
eksplatacja
projektowanie
rolnictwo
artificial neural network
identification
agriculture
Opis:
W wielu pracowniach naukowych realizowanych jest obecnie wiele nowatorskich projektów naukowo badawczych mających na celu ograniczenie negatywnych skutków występujących w trakcie opryskiwania oraz nawożenia. Dokonuje się to m.in. poprzez tworzenie systemów wczesnego wykrywania chorób roślin, pojawiania się chwastów i innych zagrożeń plonów. Wiele z tych projektów działa już w praktyce i ma duże szanse na praktyczne wykorzystanie w niedalekiej przyszłości na farmach eksperymentalnych, a docelowo w większych gospodarstwach rolnych. Wszystkie te projekty są budowane przy założeniem czynienia jak najmniejszej szkody środowisku naturalnemu (np. inteligentne opryski, nawożenie) dzięki dokładniejszemu oraz pełniejszemu rozpoznaniu oraz analizie wzajemnie powiązanych danych empirycznych. Wiele prac wykorzystuje technikę neuronowego rozpoznawania obrazów, kojarzenia oraz klasyfikacji danych reprezentujących cechy charakterystyczne roślin takie jak kształt, barwa czy faktura [Boniecki i Weres 2003]. Celem pracy było wytworzenie, zgodnie ze standardami inżynierii oprogramowania, interaktywnej aplikacji komputerowej, wspomagającej proces edukacyjny w zakresie konstrukcji oraz eksploatacji wybranych topologii sztucznych sieci neuronowych. Zadaniem aplikacji jest przybliżenie wybranych zagadnień z zakresu generowania i eksploatacji sieci typu perceptron oraz sieci radialnej. Wytworzony system informatyczny ma również praktycznie zaprezentować zasadę działania tych sieci, w szczególności jako narzędzi klasyfikacyjnych, na przykładzie zadania identyfikacji wybranych odmian kwiatów.
Many research institutions conduct novel R&D projects designed to limit the adverse impact of crop spraying and fertilization. Some such projects produce systems for early detection of crop diseases, weed growth and other crop hazards. Many apply their findings in practice or stand a good chance of being employed in the near future, first on experimental and then on larger farms. All of such projects are developed with a view to reducing adverse environmental impact (by e.g. smart crop spraying and fertilization) by more accurately and completely recognizing and analyzing interrelated empirical data. Many such works rely on the neural technology of image recognition, as well as the association and classification of data representing characteristic features of plants (shapes, colors, textures, etc.). The purpose of this project was to develop an interactive computer application pursuant to software engineering standards that would support education in the field of constructing and operating selected artificial neural network topologies. The project is designed to investigate selected problems having to do with the generation and operation of perceptron and radial networks and help present the networks' operating principles as classification instruments in a case of identifying flower varieties for practical purposes.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 13(88), 13(88); 17-27
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konstrukcja bioreaktorów w kontekście zagadnienia modelowania procesu kompostowania
Bioreactors construction in the context of modeling composting process
Autorzy:
Olszewski, T.
Dach, J.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335482.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bioreaktor
konstrukcja
kompostowanie
sztuczna sieć neuronowa
bioreactor
construction
composting
artificial neural network
Opis:
Kompostowanie materii organicznej jest złożonym procesem, który charakteryzuje wiele parametrów chemiczno-fizycznych. Badanie procesu kompostowania w pryzmach w skali rzeczywistej wymaga nakładu środków i pracy. Doświadczenia tego typu w warunkach terenowych są trudne do kontrolowania i brak jest pewności co do powtarzalności warunków pomiarowych. Wykorzystanie rozbudowanej aparatury pomiarowej w badaniach polowych jest bardzo utrudnione m.in. ze względu na wpływ zmiennej pogody, ograniczenia czasowe (częstotliwość wykonywania pomiarów) itp. Modelowanie procesu rozkładu substancji organicznych w laboratoriach umożliwia jego dokładniejsze poznanie i kontrolę nad czynnikami mającymi wpływ na jego przebieg. W pracy przedstawiono przegląd bioreaktorów wykorzystywanych do modelowania procesu kompostowania. Zastosowanie różnych rozwiązań konstrukcyjnych, sprzętu pomiarowego i rejestracyjnego ma istotny wpływ na odwzorowanie warunków terenowych w doświadczeniach laboratoryjnych. Przedstawiono również przykłady wykorzystania sztucznych sieci neuronowych podczas doświadczeń z użyciem bioreaktorów, jako narzędzia do modelowania zjawisk związanych z procesami przemiany materii w aspekcie biologicznym, chemicznym i fizycznym.
Composting of organic matter is a complex process characterized by many physical and chemical parameters. The studies investigated in a real scale need lots of labour and financial sources. The experiments infield conditions are difficult to control and their repeatability is low. The usage of scientific set-up is limited because of heap dimensions, weather conditions and work time limitations. The modeling of organic matter decomposition in laboratories makes easier better control and survey of parameters which influence on a process. The paper presents review of bioreactors used for modeling of composting process. The application of different constructions, techniques of measurement and data registration has an important impact on projection of field conditions in a laboratory scale. The examples of usage of the artificial neural networks during experiments with bioreactors were also presented.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 2; 52-56
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie technik neuronowych w praktyce rolniczej
Using of neuronal techniques in agricultural practice
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335801.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
technika neuronowa
praktyka rolnicza
system klasyfikacji
sieć neuronowa
neural technique
agricultural practice
classification system
neural network
Opis:
Rozwój technologii informatycznych spowodował pojawienie się zupełnie nowych możliwości analitycznych, bazujących na obserwacjach procesów naturalnych, a w szczególności na wnioskach płynących z badań naukowych dotyczących pracy mózgu, jakie opisują dynamicznie rozwijające się techniki przetwarzania neuronowego (Osowski S., 2000). Należy podkreślić, że sztuczne sieci neuronowe potrafią operować zarówno na zbiorach danych numerycznych, pochodzących np. z badań doświadczalnych, jak również na zbiorach rozmytych, tak charakterystycznych dla postrzegania ludzkiego umyslu. Ostatnio znajdują zastosowanie w systemach klasyfikacyjnych wykorzystywanych w rolnictwie.
The development of computer technologies caused the appearance of the completely new analytic possibilities, basing on observations of natural processes, and in peculiarity on conclusions following with scientific researches relating the brain work investigations, what is described by the dynamically developing techniques of neuronal processing. One should underline, that artificial neuronal networks are able to operate both on gatherings of numeric data coming from experimental investigations, as well as on fuzzy sets, so characteristic for perception of human mind. Recently they are used in agriculture in classification systems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 10-14
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowe techniki klasyfikacyjne w problemach identyfikacyjnych inżynierii rolniczej
The neuronal classifying techniques in problems of identification of agricultural engineering
Autorzy:
Boniecki, P.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/337135.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
technika neuronowa
klasyfikacja
sztuczna sieć neuronowa
agricultural engineering
neural technique
artificial neural network
classification
Opis:
Celem pracy było omówienie podstawowych technik klasyfikacyjnych w kontekście wykorzystania ich w problemach badawczych inżynierii rolniczej. Wskazano wybrane topologie sztucznych sieci neuronowych jako efektywne narzędzia klasyfikacyjne. Dodatkowym efektem przeprowadzonej analizy bylo wytworzenie systemu informatycznego "Sieci neuronowe - Perceptron " wspomagającego proces edukacji. Wytworzony program komputerowy ma za zadanie klasyfikować dane zaczerpnięte z obszaru inżynierii rolniczej. Program działa w oparciu o sieć wielowarstwową typu perceptron - MLP (MultiLayer Perceptron).
The aim of the work was discussion of basic classifying techniques in context of their utilisation in investigative problems of agricultural engineering. The chosen topology of artificial neural networks were showed as effective classifying tools. Creation of the computer system "The neuronal nets - Perceptron " was the additional effect of the conducted analysis, helping the process of education. The aim of the created computer program is to classify the data obtained from the area of agricultural engineering. The program acts on the basis of many-layered network of perceptron type - MLP (MultiLayer Perceptron).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 3; 15-19
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa identyfikacja poziomu zawartości tłuszczu w tkance mięśniowej owiec
Neural identification of the lambs intramuscular fat level content
Autorzy:
Przybylak, A.
Boniecki, P.
KOozłowski, R. J.
Ślósarz, P.
Powiązania:
https://bibliotekanauki.pl/articles/336831.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
tłuszcz
owca
tkanka mięśniowa
zawartość
neural network
lamb
content
intramuscular
fat
Opis:
Rozwiązanie problemu identyfikacji ilości tłuszczu w mięsie, na podstawie informacji zawartej w obrazie ultrasonograficznym wykonanym na żywym zwierzęciu, ma istotne znaczenie utylitarne. W pracy zaproponowano wykorzystanie nowoczesnych metod sztucznej inteligencji, a w szczególności aproksymacyjnych technik sztucznych sieci neuronowych do określania poziomu zawartości tłuszczu w tkance mięśniowej owiec.
The solution of the problem in the identification process of the quantity of the intramuscular fat, on the basis of contained information in the ultrasonographic image from living animal, has the essential utilitarian meaning. This paper investigates the utilization of methods of artificial intelligence, in particularly approximation algorithms of artificial neural network models.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 2; 76-78
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych w procesie identyfikacji wołka zbożowego
Using of artificial neuronal networks in identification process of granary weevils
Autorzy:
Świerczyński, K.
Olejarski, P.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/336833.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
wołek zbożowy
zboże
identyfikacja
neuronal network
identification
granary weevil
cereal crop
Opis:
Szkodniki magazynowe stanowią poważny problem podczas przechowywania zbóż. Zarażenie całej masy przechowywanego materiału może nastąpić przez niewielką ilość dostarczonego towaru wraz z szkodnikiem. Do tych najgroźniejszych szkodników zaliczamy wołka zbożowego [Sitophilus granarius (L.)], który rozmnaża się wewnątrz ziarniaka, powodując jednocześnie obniżenie jakości ziarna, co w efekcie końcowym wynosić może 5% strat. Jednym ze sposobów nie dopuszczenia do opisywanej sytuacji jest identyfikacja wołka podczas dostarczania zboża do magazynu. Możliwym rozwiązaniem jest wykorzystanie zdolności klasyfikacyjnych, jakie m.in. reprezentują sztuczne sieci neuronowe. Zbiór uczący, służący do budowy modeli neuronowych, został wygenerowany na postawie uzyskanych danych empirycznych z wykorzystaniem urządzania SKCS 4100 (Single Kernel Characterization System). Przeprowadzono analizę uzyskanych modeli, w wyniku której określono przydatność stosowania ich w procesie identyfikacji występowania wołka w ziarniaku.
Pests of granary constitute the serious problem while keeping cereal crops. Infecting the entire amount of stored material can follow through the sparseness of delivered goods together with pest. For most dangerous from the ones we rate granary weevil [Sitophilus granarius (L.)], which lives inside of kernel. It causes degradation of quality and the final effect, up to the 5% of losses. One resolution is that we cannot let to describable situation and we have to identify of weevil while we deliver cereal to granary. We can use classification ability of artificial networks. Data set, which we use for creation of neuronal models, was generated on the basis of received empirical data with using SKCS 4100 (Single Kernel Characterization System) device. Analysis of obtained models was carried out determining usefulness of applying them in the process of the identification of appearing of weevil in kernel.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 2; 73-75
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka badawcza oraz przygotowanie zbiorów uczących dla sieci neuronowych identyfikujących jakość kompostu
Research methodology and preparation of learning datasets for neural networks identifying compost quality
Autorzy:
Jakubek, A.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/286658.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kompost
analiza obrazu
sieć neuronowa
sztuczna inteligencja
compost
image analysis
neural network
artificial intelligence
Opis:
Nie istnieje tania i szybka metoda określania stopnia dojrzałości kompostu, która mogłaby zostać przeprowadzona przez osobę nie posiadającą doświadczenia w tej dziedzinie. Podjęto zatem próbę jej estymacji wykorzystując jako narzędzie sztuczne sieci neuronowe. Opisana metodyka przestawia kolejne etapy prac badawczych przeprowadzonych w celu pozyskania reprezentatywnych danych do trenowania inteligentnych systemów klasyfikujących.
There is no cheap and quick method for determining the degree of compost maturity, which could be carried out by a person having no experience in this field. Therefore, there has been an attempt made to estimate it using artificial neural networks as a tool. Described methodology presents subsequent stages of research works carried out in order to acquire representative data for training intelligent classifying systems.
Źródło:
Inżynieria Rolnicza; 2011, R. 15, nr 1, 1; 85-90
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa analiza zdjęć ultrasonograficznych w procesie identyfikacji poziomu zawartości tłuszczu - badania wstępne
Neural analysis of the ultrasonographic images in the intramuscular fat level content identification process - preliminary research
Autorzy:
Przybylak, A.
Boniecki, P.
Kozłowski, R. J.
Ślósarz, P.
Powiązania:
https://bibliotekanauki.pl/articles/290911.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
zawartość tłuszczu
ultrasonografia
analiza obrazu
sieć neuronowa
fat content
ultrasonographic
image analysis
neural network
Opis:
Rozwiązanie problemu identyfikacji ilości tłuszczu w mięsie, na podstawie informacji zawartej w obrazie ultrasonograficznym wykonanym na żywym zwierzęciu, ma istotne znaczenie utylitarne. W pracy zaproponowano wykorzystanie nowoczesnych metod sztucznej inteligencji, a w szczególności aproksymacyjnych technik sztucznych sieci neuronowych.
The solution of the problem in the identification process of the quantity of the intramuscular fat, on the basis of contained information in the ultrasonographic photo from living animal, has the essential utilitarian meaning. This paper investigates the utilization of methods of artificial intelligence, in particularly approximation algorithms of artificial neural network models.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 6(104), 6(104); 159-165
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies