Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Wyświetlanie 1-15 z 15
Tytuł:
Algorytmy genetyczne jako narzędzie optymalizacyjne stosowane w sieciach neuronowych
Genetic algorithms as a optimization tool applied in neural networks
Autorzy:
Olszewski, T.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/289865.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
algorytmy genetyczne
artificial neural networks
genetic algorithms
Opis:
Rewolucyjne wynalazki człowieka bardzo często powstają w wyniku obserwacji przyrody. Korzysta ona z rozwiązań najlepszych i optymalnych, tak więc wartych naśladowania. Niestety czasami jest to bardzo trudne. Przykładem może być mózg ludzki, którego funkcjonowania nadal nie rozumiemy do końca. Obserwując jego budowę stworzono Sztuczne Sieci Neuronowe, które są jego bardzo uproszczonym modelem mającym wykorzystywać jego najważniejsze cechy czyli zdolność uczenia i kojarzenia. Ewolucja naturalna jest swoistym procesem optymalizacyjnym mającym na celu najlepsze przystosowanie osobników do otaczającego świata, a co się z tym wiąże - przetrwania gatunku. Również mechanizmy ewolucyjne zostały wykorzystane przez człowieka. Jedną z metod odwzorowującą te mechanizmy są algorytmy genetyczne pozwalające na optymalne rozwiązanie różnych problemów. W artykule zostało przedstawione połączenie obu idei.
Revolutionary human inventions very often arise as a result of nature observation. Nature use the best and optimal solutions therefore deserves to copy. Unfortunately, sometimes it’s very hard. Human’s brain can be example, whose functions we don’t fully understand. As a result of observations of the build of human’s brain made artificial neural networks. They are its very simplified model, which use its main features: ability to learn and associate. Natural evolution is peculiar optimization process which purpose is the best adaptation of specimen to the surrounding world and it is in connection with survival of the species. Evolutionary mechanics were exploit by the human as well. Genetic algorithms are one of many methods which model evolutionary mechanics. They allow to find optimal solution for different problems. This article presents the combination both ideas.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 137-143
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza założeń dla modelowania plonu buraka cukrowego z wykorzystaniem sztucznych sieci neuronowych
The analysis of assumptions for modeling sugar beet crop with utilization of artificial neural networks
Autorzy:
Niedbała, G.
Przybył, J.
Boniecki, P.
Sęk, T.
Powiązania:
https://bibliotekanauki.pl/articles/287451.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
burak cukrowy
predykcja plonu
sztuczne sieci neuronowe
sugar beet
crop prediction
artificial neural network
Opis:
Do planowania plonu roślin, w tym plonu buraka cukrowego, wykorzystuje się modele prognostyczne. Istniejące modele mają zastosowanie zarówno w skali mikro - dla gospodarstwa, jaki i makro - dla regionu, czy kraju. Te modele, najczęściej zaimplementowane w programach komputerowych, ze względu na dużą liczbę danych wejściowych, są raczej niedostępne dla plantatora buraka cukrowego i rolniczych służb doradczych. Dlatego w pracy podjęto próbę opracowania własnego modelu plonu buraka cukrowego, opartego na metodach sztucznej inteligencji, przy wykorzystaniu możliwie niewielkiej liczby danych wejściowych. Założono, że dane wejściowe do modelu powinny stanowić podstawowe czynniki charakteryzujące siedlisko, użyte środki produkcji i przebieg warunków pogodowych.
In planning crops, including sugar beet crop, prognostic models are used. Existing models are utilized in micro scale - for the farm, as well as in macro scale - for region or country. These models, generally implemented in computer programmes, are rather unavailable for sugar beet planters and agricultural advisory services because of the huge amount of input data. That is why in this paper an attempt was made to create own model of sugar beet crop based on artificial intelligence methodology and the smallest possible amount of input data. It was assumed that input data for models should be the basic factors characterizing habitat, means of production used and weather conditions course.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 123-130
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja procesów decyzyjnych przy zastosowaniu wybranych metod sztucznej inteligencji
Optimization of decision processes using chosen methods of artificial intelligence
Autorzy:
Nowakowski, K.
Boniecki, P.
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/288891.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
system ekspercki
optymalizacja
proces decyzyjny
artificial neural network
expert system
optimization
decision cases
Opis:
Już od dawna ludzie poszukują narzędzi, które pomogłyby im w procesie podejmowania trafnych decyzji. Ze względu na nikłe jak do tej pory sukcesy rozsądnym wydaje się być wykorzystanie w tym celu wybranych metod sztucznej inteligencji. Użycie w/w technologii opartych na symulacji pracy ludzkiego umysłu daje nowe możliwości. Połączenie techniki sztucznych sieci neuronowych i systemów ekspertowych pozwoliło na stworzenie wirtualnych doradców - specjalistów w wybranej dziedzinie. Pozwalają oni skutecznie pomóc w podejmowaniu konkretnych decyzji. Nie zrobią tego za człowieka ale dzięki wykorzystanym technologią mogą pomóc w podjęciu optymalnej decyzji.
Since a long time humans seek tools which would help them take accurate decisions. Because of very little success so far, choosing methods of artificial intelligence seems to be reasonable. Using mentioned technologies based on simulation of work of human mind gives new possibilities. The connection of technique of artificial neural network and expert systems permitted to create virtual advisers' - experts in chosen field. They permit to help treat concrete decisions effectively. They will not make it instead of humans but thanks to used technology they can help undertake optimal decision.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 131-136
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena efektywności neuronowego prognozowania w oparciu o wybrane metody na przykładzie dystrybucji produktów rolniczych
Assessment of effectiveness of the neural prediction based on selected methods exemplified by distribution of agricultural products
Autorzy:
Koszela, K.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/287927.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna inteligencja
sztuczne sieci neuronowe
prognozowanie
szeregi czasowe
artificial intelligence
artificial neural networks
prediction
time series
Opis:
Prognozowanie staje się bardzo ważnym etapem w każdej działalności. W przypadku dystrybucji produktów rolniczych mamy do czynienia z szeregiem złożonych bodźców, które przekładają się na wynik końcowy. Natomiast jakość tych prognoz ma ogromne znaczenie na kolejne etapy w łańcuchu produkcyjno-dystrybucyjnym. Sieci neuronowe są bardzo wysublimowaną techniką modelowania, zdolną odwzorować bardzo złożone funkcje. Modelowanie z wykorzystaniem sztucznych sieci neuronowych stosuje się wówczas, gdy nie jest znany dokładny opis matematyczny rozpatrywanego zjawiska, natomiast dobrze określone są jego wejścia i wyjścia. Sztuczna sieć neuronowa potrafi nauczyć się rozpoznawać analizowany problem, dając szybko odpowiedź na zmieniające się parametry wejściowe procesu. W pracy przedstawiono porównanie dwóch metod neuronowego modelowania sprzedaży wybranego produktu.
Prediction becomes a very important stage in many activities. In case of distributing agricultural products we deal with a number of stimuli which consequently transform into the end effect. It is clear that the quality of those predictions has a great influence on subsequent stages in the production and distribution chain. Neural networks are a sophisticated technique of modeling capable of reflecting very complex functions. Modeling using artificial neural networks is used when exact mathematical description of investigated phenomenon is not known but its inputs and outputs are well defined. Artificial neural network can learn to recognize the problem analyzed giving an answer to changing input parameters. In the paper two methods of neural modeling of a chosen agricultural product distribution were presented.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 69-76
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural identification of images showing selected varieties of stored potatoes
Neuronowa identyfikacja obrazów wybranych odmian magazynowanych ziemniaków
Autorzy:
Lange, D. M.
Przybył, K.
Łukomski, M.
Koszela, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/334965.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
artificial neural networks
neural modeling
image analysis
graphic descriptors
edible potato tubers
sztuczne sieci neuronowe
modelowanie neuronowe
analiza obrazu
deskryptor graficzny
bulwa
ziemniak jadalny
Opis:
In recent years, there has been a growing interest in the use of modern IT tools in agricultural engineering. Both image analysis methods and artificial neural networks, designed to reproduce the work of the human brain, serve to build predictive and classification models, highly useful for modern agriculture. Correct identification of both the seed material and the produced crops becomes a priority of agricultural engineering, ensuring adequate efficiency and cost-effectiveness of agrotechnical operations. This article presents a project whose aim was to develop an effective neural model for qualitative identification of the variety of stored consumer potato tubers by using input data obtained in the process of digital image analysis. The designed and created artificial neural network model (multilayer perceptron), using informations in the form of selected graphic descriptors, classifies three selected varieties of edible potato (Denar, Gala, Vineta).
W ostatnich latach dostrzec można wzrastające zainteresowanie wykorzystywaniem nowoczesnych narzędzi informatycznych w inżynierii rolniczej. Zarówno metody analizy obrazu, jak i sztuczne sieci neuronowe, mające odwzorowywać pracę ludzkiego mózgu, służą budowaniu modeli predykcyjnych i klasyfikacyjnych, wysoce użytecznych dla współczesnego rolnictwa. Właściwa identyfikacja zarówno materiału siewnego, jak i wytworzonych plonów, staje się priorytetem inżynierii rolniczej, zapewniając odpowiednią efektywność i opłacalność przeprowadzanych zabiegów agrotechnicznych. Niniejszy artykuł przedstawia projekt, którego celem było opracowanie efektywnego modelu neuronowego służącego do identyfikacji jakościowej odmiany magazynowanych bulw ziemniaków konsumpcyjnych przy użyciu danych wejściowych pozyskanych w procesie analizy obrazów cyfrowych. Zaprojektowany i wytworzony model sztucznej sieci neuronowej (perceptron wielowarstwowy), korzystający z informacji w postaci wybranych deskryptorów graficznych, klasyfikuje trzy wybrane odmiany ziemniaka jadalnego (Denar, Gala, Vineta).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 110-113
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of neural image analysis in the identification of information encoded in a graphical form
Wykorzystanie neuronowej analizy obrazów w identyfikacji informacji zakodowanej w formie graficznej
Autorzy:
Koszela, K.
Boniecki, P.
Kuzimska, T.
Powiązania:
https://bibliotekanauki.pl/articles/956540.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
identification of class oocytes
quality classification
computer image analysis
image analysis
artificial neural networks
identyfikacja klas oocytów
klasyfikacja jakościowa
analiza obrazu
sztuczne sieci neuronowe
Opis:
Numerous scientific and research centres are searching for solutions concerning the problem of quality classification of animal oocytes. Conducting such studies is purposeful, particularly in the context of constant attempts to improve the quality of food products, which depends on the breeding value of livestock. Therefore, searching for methods of stimulation of proper development of a larger number of animal oocytes, particularly in extracorporeal conditions, gains special importance. An increasing interest in assisted reproduction techniques resulted in searching for new, increasingly effective methods of quality assessment of mammalian gametes and embryos. The expected progress in the production of animal embryos in vitro is largely dependent on proper classification of obtained oocytes. The aim of this work was to develop a non-invasive method for the quality assessment of oocytes, performed on the basis of graphic information encoded in the form of monochromatic digital images obtained via microscopy techniques. The classification process was conducted based on the information presented in the form of microphotography pictures of domestic pig oocytes, using advanced methods of neural image analysis.
Rozwiązaniem problemu klasyfikacji jakościowej oocytów zwierzęcych zajmuje się wiele różnych ośrodków naukowo-badawczych. Celowość prowadzenia takich badań jest uzasadniona szczególnie w kontekście ciągłego dążenia do podnoszenia jakości produktów żywnościowych, która jest pochodną wartości hodowlanej zwierząt gospodarskich. W związku z tym, istotnego znaczenia nabierają poszukiwania metod prowadzących do stymulowania prawidłowego rozwoju większej liczby zapładnianych oocytów zwierzęcych, zwłaszcza realizowanego w warunkach pozaustrojowych. Rosnące zainteresowanie technikami wspomaganego rozrodu stało się przyczyną poszukiwania nowych, coraz bardziej efektywnych metod oceny jakościowej gamet oraz zarodków ssaków. Oczekiwany postęp w produkcji zarodków in vitro zwierząt uzależniony jest w istocie od poprawnej klasyfikacji pozyskiwanych oocytów. Celem pracy było opracowanie bezinwazyjnej metody oceny jakościowej oocytów dokonywanej w oparciu o informację graficzną zakodowana w postaci monochromatycznych obrazów cyfrowych pozyskanych metodą mikroskopową. Proces klasyfikacji zrealizowano w oparciu o informację prezentowaną w formie zdjęć mikrofotograficznych oocytów świni domowej, wykorzystując w tym celu nowoczesne metody neuronowej analizy obrazu.
Źródło:
Agricultural Engineering; 2015, 19, 3; 25-35
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza neuronowa wybranych parametrów zdolności wydojowej krów wysokowydajnych
The neural analysis of selected parameters of milking capacity for high-yield cows
Autorzy:
Jedrus, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/884086.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
krowy wysokomleczne
zdolnosc wydojowa
mleko cwiartkowe
wydajnosc mleka
sieci neuronowe sztuczne
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2014, 1
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa neuronowych modeli prognostycznych na przykladzie wybranych zagadnien inzynierii rolniczej
Construction of neural forecasting models for example of selected issues in agricultural engineering
Autorzy:
Dejewska, T
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/883707.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zbiory danych
modelowanie
modele prognostyczne
inzynieria rolnicza
sieci neuronowe sztuczne
uczenie sie
Opis:
Celem pracy było omówienie metodyki budowy modeli prognostycznych w oparciu o sztuczne sieci neuronowe. Podczas konstruowania modelu neuronowego realizującego predykcję występują często złożone problemy. Z uwagi na to przybliżono metody pozwalające na poprawny przebieg poszczególnych etapów budowy. Przedstawiono również wartość poznawczą i skuteczność działania tych modeli dla inżynierii rolniczej.
The aim of the following thesis was the description of methods of building of prognostic models with the use of the artificial neural networks. During constructing of neuronal model of prediction, a variety of complex problems may often appear. In consideration of those problems, some methods enabling appropriate course of each of the stages of building the model were presented. Moreover, a cognitive value and effectiveness of working of those models in the agricultural engineering were introduced.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2009, 05; 7-10
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
JabVis 1.1 ewolucja aplikacji z elementami sztucznej inteligencji
JabVis 1.1 evolution of application with elements of artificial intelligence
Autorzy:
Jakubek, A.
Boniecki, P.
Dejewska, T.
Zaborowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/884284.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
owoce
jablka
dojrzalosc owocow
stopien dojrzalosci
sieci neuronowe sztuczne
system JabVis 1.1
Opis:
Bezinwazyjne metody określania stadium dojrzałości jabłek są obszarem zainteresowań branży sadowniczej oraz przetwórczej tych owoców. Odpowiedzią na to zapotrzebowanie jest aplikacja JabVis ver. 1.1 powstała w 2010 w Instytucie Inżynierii Rolniczej. Jądro aplikacji zostało zaczerpnięte z poprzedniej wersji programu, który służył z kolei do identyfikacji trzech odmian jabłek. W JabVis 1.1 zostały zintegrowane moduły identyfikujące odmianę oraz stopień dojrzałości jabłek. Liczba odmian jabłoni oraz operowanie tylko na trzech z nich, pozwala na dalszą wielopłaszczyznową rozbudowę systemu w przyszłości.
Non-invasive methods for determining the maturity of apples are an area of interest in the horticultural industry and the processing of these fruits. Created in 2010 at the Institute of Agricultural Engineering, the application JabVis version 1.1 is answer to this need.. Application kernel is taken from a previous version, which in turn served to identify three varieties of apples. Modules able to identify the variety and ripeness of apples are integrated into JabVis 1.1. Number of varieties of apple trees and manipulations on only three of them, allows for further expansion of multi-level system in the future.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2011, 01
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny HISTLAB 2013 v.2.0 wspomagający ocenę geometryczną płodów rolnych
HISTLAB v.2.0 system for assist geometrical assessment of crops
Autorzy:
Przybyl, K.
Mlynski, D.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/883449.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
plody rolne
ocena jakosci
parametry geometryczne
identyfikacja
fotografia cyfrowa
cyfrowa analiza obrazu
sieci neuronowe sztuczne
systemy informatyczne
system HISTLAB
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2014, 4
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przykłady wykorzystania modelowania neuronowego w praktyce rolniczej
Examples of the use of neural modeling in agricultural practice
Autorzy:
Przybylak, A.
Boniecki, P.
Zaborowicz, M.
Mo, Zhou
Przybyl, K.
Powiązania:
https://bibliotekanauki.pl/articles/883761.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieci neuronowe sztuczne
wykorzystanie
modelowanie neuronowe
modele klasyfikacyjne
system ObrazKoh
system Szkodniki
modele prognostyczne
system Neuronet
system Plon 1.0
system PrognozaPlony
system ProgAzot 1.1
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2013, 1
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja wykorzystania sztucznych sieci neuronowych do prognozowania zawartości metanu w substratach
The concept of usage of artificial neural networks for forecasting the methane content in the substrates
Autorzy:
Koszela, K.
Pilarski, K.
Dach, J.
Boniecki, P.
Jedrus, A.
Powiązania:
https://bibliotekanauki.pl/articles/883640.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
biogazownie
substraty roslinne
odchody zwierzece
substraty komunalne
substraty przemyslowe
zawartosc metanu
fermentacja
produkcja biogazu
produkcja metanu
wydajnosc produkcji
prognozowanie
sieci neuronowe sztuczne
Opis:
Sztuczne sieci neuronowe wykorzystywane są z powodzeniem m.in. do analizy złożonych systemów empirycznych, w których część parametrów opisujących zachodzące zjawiska jest niemierzalna lub których precyzyjny pomiar jest trudny. W niniejszej publikacji zaprezentowano budowę i zasady działania sztucznych sieci neuronowych jako narzędzia do predykcji zawartości metanu w biogazie z bioodpadów rolniczych [3]. Prognozowanie zawartości biogazu odgrywa ważną rolę w opracowywaniu optymalnych modeli do zarządzania biogazownią. Z powodu różnorodności bazy surowcowej istotnym jest optymalne prognozowanie wydajności biogazowni. W związku z powyższym często z powodzeniem używa się modeli typu „czarna skrzynka”, które wymagają mniejszej liczby parametrów niż klasyczne modele konceptualne.
The artificial neural networks have been successfully used for analyzing of the complex systems, where some parameters describing the occurring phenomena are non-measurable or the precise measurement is very difficult. This publication presents the construction and functioning rules of the artificial neural networks as a tool for prediction of methane content in the biogas from agricultural bio-waste. Forecasting of the biogas content plays extremely important role in development of the optimal models for biogas plant management. Due to the resource base diversity the optimal prediction of biogas plant efficiency is very important. Therefore, the "black box" models which require less parameters than classic conceptual ones are very often successfully used.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2012, 04
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa analiza wplywu sposobu doju i wybranych cech zootechnicznych krow na liczbe komorek somatycznych w mleku
Neuron analysis of the influence of the way of milking and selected characteristics of cows on somatic cell count in milk
Autorzy:
Jedrus, A
Nizewski, P.
Lipinski, M.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/883485.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
pozyskiwanie mleka
doj mechaniczny
liczba komorek somatycznych
sieci neuronowe sztuczne
krowy
mleko
wydajnosc mleka
kolejne dni laktacji
wiek zwierzat
liczba wycielen
metody oceny
Opis:
Sztuczne sieci neuronowe są narzędziem coraz częściej wykorzystywanym w poznawaniu złożonych procesów biologicznych. Celem pracy było wykorzystanie zalet sztucznych sieci neuronowych do oceny wpływu sposobu doju oraz wybranych cech zootechnicznych krów na liczbę komórek somatycznych w mleku.
Artificial neural networks are more and more frequently used to understand some complex biological processes. The aim of the paper was to use the advantages of artificial neural networks in order to check the impact of the milking way and selected cows' features on somatic cell count in milk.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2008, 04; 22-24
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Barwy jako kryterium w neuronowym rozpoznaniu grzybiczego stanu skóry u zwierząt
Colors as a criterion for neural diagnosis of fungal skin in animals
Autorzy:
Dejewska, T.
Boniecki, P.
Jakubek, A.
Zaborowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/883577.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bydlo
choroby skory
bydlo polskie holsztynsko-fryzyjskie
bydlo czarno-biale
bydlo jersey
grzybica skory
barwa skory
zdjecia cyfrowe
komputerowa analiza obrazu
zbiory danych
sieci neuronowe sztuczne
uczenie sie
Opis:
Celem pracy było zbadanie istoty informacji dotyczących barw zakodowanych w obrazie cyfrowym fragmentów skóry bydła domowego w procesie budowy modelu neuronowego. Prace badawcze przeprowadzono w oparciu o trzy rasy bydła domowego: polski holsztyno-fryz, czarno-biała, jersey. Wskazano optymalną topologię sieci, która dokonuje klasyfikacji jedynie na podstawie próbek koloru. Zwrócono także uwagę na wyniki kwalitatywne i możliwości polepszenia jej parametrów jakościowych. Przedstawiono również perspektywy rozbudowy systemu informatycznego do szerszego zastosowania w tej dziedzinie.
The aim of this study was to examine the essence of the information on color encoded in digital image fragments of bovine skin in the construction of neural model. Research basis on three bovine breeds: polish holsztyn-friesian, black and white, jersey. An optimal network topology, which makes a classification bases solely on the color samples has been indicated. Also the notice of the results and possibilities for improving the quality parameters has been taken. The development prospects of a computer system for wider application in this field have been presented.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2011, 02
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Barwy jako kryterium w neuronowym rozpoznaniu stanu grzybiczego skory u zwierzat
Colors as a criterion for neural diagnosis of fungal skin of animals
Autorzy:
Dejewska, T
Boniecki, P.
Jakubek, A.
Zaborowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/883093.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bydlo
choroby skory
bydlo polskie holsztynsko-fryzyjskie
bydlo czarno-biale
bydlo jersey
grzybica skory
zmiany chorobowe
skora zdrowa
barwa skory
zdjecia cyfrowe
komputerowa analiza obrazu
zbiory danych
sieci neuronowe sztuczne
uczenie sie
diagnostyka chorob
Opis:
Celem pracy było zbadanie istoty informacji dotyczących barw, zakodowanych w obrazie cyfrowym fragmentów skóry bydła domowego w procesie budowy modelu neuronowego. Prace badawcze przeprowadzono w oparciu o trzy rasy bydła domowego: polski holsztyno-fryz, czarno-biała, jersey. Wskazano optymalną topologię sieci, która dokonuje klasyfikacji jedynie na podstawie próbek koloru. Zwrócono także uwagę na wyniki kwalitatywne i możliwości polepszenia jej parametrów jakościowych. Przedstawiono równie¿ perspektywy rozbudowy systemu informatycznego do szerszego zastosowania w tej dziedzinie.
The aim of this study was to examine the essence of the information on color encoded in digital image fragments of bovine skin in the construction of neural model. Research based on three bovine breeds: polish holsztyn-friesian, black and white, jersey. An optimal network topology, which makes the classification basing solely on the color of samples, was indicated Also the attention was paid to the results and possibilities for improvement of the qualitative parameters. Prospects of development of the computer system for wider application in this field were also presented
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2010, 05; 11-12
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-15 z 15

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies