Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "(a.p.)." wg kryterium: Autor


Tytuł:
The neural analysis of quarters healthiness of high yield cows in selected cowshed
Neuronowa analiza zdrowotności wymion krów wysokowydajnych w wybranej oborze mlecznej
Autorzy:
Jędruś, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337371.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
neural model
cows
somatic cell count
model neuronowy
krowy
liczba komórek somatycznych
Opis:
Commonly recognized predictive abilities represented by selected ANN (Artificial Neural Networks) topologies are widely used in practice. They often support the decision-making processes that occur in agri-alimentary processing, such as milk production. The aim of the study was to use ANN as a predictive tool in the estimation process of the influence of selected zootechnical characteristics of cows on the milk quality, which is determined by the standards defining the requirements compliance concerning the level of somatic cell counts in the obtained milk. The work resulted in creation of the optimum predictive model which is a neural topology of the MLP-6:17:1 (MultiLayer Perceptron). The performed analysis of the generated neural model’s sensitivity to the individual input variables showed the impact of some of the zootechnical characteristics on somatic cell counts in the obtained milk.
Uznane zdolności predykcyjne, jakie reprezentują wybrane topologie SNN (Sztuczne Sieci Neuronowe), wykorzystywane są powszechnie również w szeroko rozumianej praktyce, np. wspomagają procesy decyzyjne zachodzące w przetwórstwie rolno-spożywczym, np. w branży mleczarskiej. Celem pracy było wykorzystanie SNN jako narzędzia predykcyjnego w procesie oceny wpływu wybranych cech zootechnicznych krów na jakość mleka krów, która określana jest przez normy definiujące spełnienie wymogów odnośnie poziomu zawartości komórek somatycznych w pozyskiwanym mleku. W pracy wytworzono optymalny model predykcyjny będący neuronową topologią typu MLP: 6-17-1 (MultiLayer Perceptron). Przeprowadzona analiza wrażliwości wygenerowanego modelu neuronowego na poszczególne zmienne wejściowe wykazała istotny wpływ wybranych cech zootechnicznych na liczbę komórek somatycznych w pozyskanym mleku.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2013, 58, 2; 55-57
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe jako narzędzie wspomagające proces numerycznego przetwarzania w problemach inżynierii rolniczej
The artificial neural networks as a helping tool in the process of numerical agricultural engineering problems
Autorzy:
Boniecki, P.
Paryś, A.
Powiązania:
https://bibliotekanauki.pl/articles/336080.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
przetwarzanie numeryczne
macierz odwrotna
agricultural engineering
artificial neural network
numerical processing
inverted matrix
Opis:
Proces dyskretyzacji ciągłego zagadnienia różniczkowego (wraz z warunkami początkowo-brzegowymi) prowadzi do uzyskania liniowego układu równań algebraicznych. Rozwiązanie takiego układu równań wymaga znajomości postaci macierzy odwrotnej układu. Jednokierunkowe sieci neuronowe mogą być efektywnie wykorzystane w algebrze macierzowej do realizacji wielu standardowych operacji macierzowych, w tym również do odwracania macierzy. Wymienione wyżej modele neuronowe pozwalają w trakcie ich eksploatacji na uzyskanie dużej szybkości działania (praktycznie działania w czasie rzeczywistym). Problemem zasadniczym, w powyższym kontekście, jest właściwe określenie funkcji energetycznej, której minimalizacja pozwala na zaprojektowanie, wygenerowanie oraz nauczenie odpowiedniej topologii sieci neuronowej. Celem pracy była analiza możliwości wykorzystanie nowoczesnych technik sztucznych sieci neuronowych do generowania postaci macierzy odwrotnej.
The discretization process of the cotinuous differential issue (with the initial-border conditions) leads to obtaining the linear set of algebraic equations. To resolve such a set of equations, the knowledge about the inverted form of system matrix is required. One-directional neural networks can be effectively used in matrix algebra to conduct lots of standard matrix operations, including matrix inversion. The neural models listed above during exploitation let to obtain a great functional speed (nearly real time work). The basic problem, in mentioned context, is the proper definition of an energetic function, minimalization of which lets to design, generate and learn the proper neural network topology. The aim of work was analysis of the possibilities of using modern techniques of artificial neural networks to generate the inverted matrix form.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza neuronowa wybranych parametrów zdolności wydojowej krów wysokowydajnych
The neural analysis of selected parameters of milking capacity for high-yield cows
Autorzy:
Jedrus, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/884086.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
krowy wysokomleczne
zdolnosc wydojowa
mleko cwiartkowe
wydajnosc mleka
sieci neuronowe sztuczne
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2014, 1
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa analiza wplywu sposobu doju i wybranych cech zootechnicznych krow na liczbe komorek somatycznych w mleku
Neuron analysis of the influence of the way of milking and selected characteristics of cows on somatic cell count in milk
Autorzy:
Jedrus, A
Nizewski, P.
Lipinski, M.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/883485.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
pozyskiwanie mleka
doj mechaniczny
liczba komorek somatycznych
sieci neuronowe sztuczne
krowy
mleko
wydajnosc mleka
kolejne dni laktacji
wiek zwierzat
liczba wycielen
metody oceny
Opis:
Sztuczne sieci neuronowe są narzędziem coraz częściej wykorzystywanym w poznawaniu złożonych procesów biologicznych. Celem pracy było wykorzystanie zalet sztucznych sieci neuronowych do oceny wpływu sposobu doju oraz wybranych cech zootechnicznych krów na liczbę komórek somatycznych w mleku.
Artificial neural networks are more and more frequently used to understand some complex biological processes. The aim of the paper was to use the advantages of artificial neural networks in order to check the impact of the milking way and selected cows' features on somatic cell count in milk.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2008, 04; 22-24
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Project of a computer system supporting extraction of the characteristics of pork half-carcases
Projekt systemu informatycznego wspomagającego ekstrakcję cech charakterystycznych półtuszy wieprzowej
Autorzy:
Fojud, A.
Boniecki, P.
Zaborowicz, M.
Lisiak, D.
Ślósarz, P.
Stanisz, M.
Strzeliński, P.
Konieczny, A.
Powiązania:
https://bibliotekanauki.pl/articles/334739.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
pork half-carcasses
evaluation of meatiness
expert system
półtusza wieprzowa
ocena mięsności
system ekspertowy
Opis:
In this paper it has been described a computer system for the processing and analysis of two-dimensional digital images of evaluated pork half-carcasses. The AOPW (pol. Analiza Obrazu Półtusz Wieprzowych) image analysis system was created in C#, in Visual Studio 2015, using the AForge.NET library. The development of the application was preceded by a requirement analysis, according to the software engineering procedures. Documentation in the form of UML diagrams was developed in Microsoft Visio. The AOPW application is used to analyze and extract the characteristics of pork halfcarcasses contained in two-dimensional digital images acquired during the slaughtering process of pigs. The application may be a part of a new method for evaluating and classifying pig carcasses according to the applicable EUROP classification. The developed system was divided into two modules: the first for processing and filtering image, enabling e.g. edge and shape detection, sharpening and image binarization. The second allows for image analysis and acquisition of characteristics of pork half-carcasses - descriptors. The presented work was created within the research project of National Research and Development Center PBS3/B8/26/2015.
W pracy zaprezentowano autorski system informatyczny służący przetwarzaniu i analizie dwuwymiarowych obrazów cyfrowych, poddawanych ocenie półtusz wieprzowych. System o nazwie Analiza Obrazu Półtusz Wieprzowych (AOPW) został wytworzony w języku C#, w pakiecie Visual Studio 2015, z użyciem biblioteki AForge.NET. Opracowanie aplikacji zostało poprzedzone analizą wymagań, zgodnie z procedurami inżynierii oprogramowania. Powstała na tym etapie dokumentacja w postaci diagramów UML została przygotowana w programie Microsoft Visio. Aplikacja AOPW służy do analizy i ekstrakcji cech charakterystycznych półtusz wieprzowych, zawartych na dwuwymiarowych obrazach cyfrowych pozyskanych w trakcie procesu uboju trzody chlewnej. Aplikacja może stanowić element nowej metody oceny i klasyfikacji półtusz wieprzowych według obowiązującej klasyfikacji EUROP. Opracowany system został podzielony na dwa moduły: pierwszy przetwarzający i filtrujący obraz, umożliwiający m.in. wykrywanie krawędzi i kształtów, wyostrzanie oraz binaryzację obrazu; drugi pozwalający na analizę obrazu i pozyskanie cech charakterystycznych – deskryptorów. Przedstawiona praca powstała w ramach projektu badawczego Narodowego Centrum Badań i Rozwoju PBS3/B8/26/2015.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2017, 62, 3; 87-92
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa identyfikacja poziomu zawartości tłuszczu w tkance mięśniowej owiec
Neural identification of the lambs intramuscular fat level content
Autorzy:
Przybylak, A.
Boniecki, P.
KOozłowski, R. J.
Ślósarz, P.
Powiązania:
https://bibliotekanauki.pl/articles/336831.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
tłuszcz
owca
tkanka mięśniowa
zawartość
neural network
lamb
content
intramuscular
fat
Opis:
Rozwiązanie problemu identyfikacji ilości tłuszczu w mięsie, na podstawie informacji zawartej w obrazie ultrasonograficznym wykonanym na żywym zwierzęciu, ma istotne znaczenie utylitarne. W pracy zaproponowano wykorzystanie nowoczesnych metod sztucznej inteligencji, a w szczególności aproksymacyjnych technik sztucznych sieci neuronowych do określania poziomu zawartości tłuszczu w tkance mięśniowej owiec.
The solution of the problem in the identification process of the quantity of the intramuscular fat, on the basis of contained information in the ultrasonographic image from living animal, has the essential utilitarian meaning. This paper investigates the utilization of methods of artificial intelligence, in particularly approximation algorithms of artificial neural network models.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 2; 76-78
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa analiza zdjęć ultrasonograficznych w procesie identyfikacji poziomu zawartości tłuszczu - badania wstępne
Neural analysis of the ultrasonographic images in the intramuscular fat level content identification process - preliminary research
Autorzy:
Przybylak, A.
Boniecki, P.
Kozłowski, R. J.
Ślósarz, P.
Powiązania:
https://bibliotekanauki.pl/articles/290911.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
zawartość tłuszczu
ultrasonografia
analiza obrazu
sieć neuronowa
fat content
ultrasonographic
image analysis
neural network
Opis:
Rozwiązanie problemu identyfikacji ilości tłuszczu w mięsie, na podstawie informacji zawartej w obrazie ultrasonograficznym wykonanym na żywym zwierzęciu, ma istotne znaczenie utylitarne. W pracy zaproponowano wykorzystanie nowoczesnych metod sztucznej inteligencji, a w szczególności aproksymacyjnych technik sztucznych sieci neuronowych.
The solution of the problem in the identification process of the quantity of the intramuscular fat, on the basis of contained information in the ultrasonographic photo from living animal, has the essential utilitarian meaning. This paper investigates the utilization of methods of artificial intelligence, in particularly approximation algorithms of artificial neural network models.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 6(104), 6(104); 159-165
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania wpływu aeracji na dynamikę procesu kompostowania osadów ściekowych w bioreaktorze
Influence of aeration level on dynamic of sewage sludge composting process in bioreactor
Autorzy:
Dach, J.
Niżewski, P.
Jędruś, A.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/336475.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
osad ściekowy
bioreaktor
aeracja
kompostowanie
sewage sludge
composting process
bioreactor
aeration
Opis:
Problem kompostowania osadów ściekowych jest coraz częściej podejmowany w licznych badaniach naukowych. Podstawowym parametrem wpływającym na przebieg procesu kompostowania jest dostępność tlenu. W niniejszej pracy podjęto próbę oceny wpływu intensywności napowietrzania kompostowanej masy na przebieg procesu. Do badań wykorzystano 2-komorowy izolowany bioreaktor służący do modelowania procesów zachodzących w czasie tlenowego i beztlenowego zagospodarowywania materii organicznej. Stwierdzono, iż bardziej intensywne napowietrznie wpływa na większą dynamikę procesu wyrażoną wzrostem temperatury i szybkością przemian fizycznych i chemicznych. Ostatecznie jednak jakość kompostów uzyskanych w wyniku różnej intensywności napowietrzenia jest podobna.
The problem of sewage sludge composting becomes the subject of many scientific investigations. The presence of oxygen is the main parameter which influences on composting process. This paper presents the research on the influence of aeration level on the intensity of the process. The 2-chambers bioreactor for modeling of aerobic and anaerobic processes of organic matter decomposition was used It was found that higher level of aeration influences on more intense dynamic of the process which is expressed with temperature increase and rapidity of physical and chemical changes. However ultimately the quality of composts obtained as result of different aeration intensity is similar.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 1; 68-72
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Project of an open information technology system supporting farm management
Projekt otwartego systemu informatycznego wspomagającego zarządzanie gospodarstwem rolnym
Autorzy:
Fojud, A.
Zaborowicz, M.
Boniecki, P.
Okoń, P.
Powiązania:
https://bibliotekanauki.pl/articles/337041.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
farm management
IT
agriculture
Internet application
.NET Framework
zarządzanie gospodarstwem rolnym
rolnictwo
aplikacja internetowa
NET Framework
Opis:
This paper presents an original information system supporting the management of an agricultural holding codenamed AGMS (Agro-Management System). This system was created in C# language, using ASP. NET MVC programming technology. The application database layer was supported by SQL Server and Entity Framework technology. The creation of the program's views enabled such languages as HTML 5, CSS3 along with Bootstrap library and Javascript with dedicated Knockout.js library. The development of the system was preceded by an analysis of requirements, in accordance with software engineering procedures. The documentation created at this stage in the form of UML diagrams was prepared in Microsoft Visio. The AGMS program presented in this article is a developmental version, so all its functionalities are not yet fully implemented. The user can use the current version of the software to map fields, manage events related to individual fields and, among other things, obtain information on pests and weeds. The article also describes the concept of the final version of the program, which should include modules implementing simple methods of artificial intelligence in the field of image recognition and decision support.
Zaprezentowano autorski system informatyczny wspomagający zarządzanie gospodarstwem rolnym o nazwie kodowej AGMS (Agro-Management System). System ten został wytworzony w języku C#, w technologii programistycznej ASP.NET MVC. Warstwa bazodanowa aplikacji została obsłużona przez SQL Server oraz technologię Entity Framework. Wytworzenie widoków programu umożliwiły takie języki jak HTML5, CSS3 wraz z biblioteką Bootstrap a także Javascript z dedykowaną biblioteką Knockout.js. Opracowanie systemu zostało poprzedzone analizą wymagań, zgodnie z procedurami inżynierii oprogramowania. Powstała na tym etapie dokumentacja w postaci diagramów UML została przygotowania w programie Microsoft Visio. Program AGMS prezentowany w niniejszym artykule jest wersją rozwojową, a zatem jego wszystkie jego funkcjonalności nie są jeszcze w pełni zaimplementowane. Użytkownik korzystając z aktualnej wersji oprogramowania ma możliwość mapowania pola, zarządzania zdarzeniami dotyczącymi poszczególnych pól, a także m.in. może zasięgać informacji o szkodnikach czy chwastach. W pracy opisano także koncepcję finalnej wersji programu, w której powinny znaleźć się moduły implementujące proste metody sztucznej inteligencji w zakresie rozpoznawania obrazów i wspomagania podejmowania decyzji.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 56-62
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Noninvasive estimation of marbling in lambs carcasses
Nieinwazyjna ocena marmurkowatości tusz jagnięcych
Autorzy:
Przybylak, A.
Ślósarz, P.
Boniecki, P.
Lisiak, D.
Stanisz, M.
Ludwiczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/334086.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
tusze jagnięce
marmurkowatość
ocena
lamb`s carcasses
marbling
estimation
Opis:
An important, and not yet solved problem in meat industry is the issue of estimating the intramuscular fat level content in the carcass. Solution of the problem of identification of quantity of the intramuscular fat, on the basis of Information in ultrasound images taken on lamb's carcasses or even living animal, is ofessential utilitarian importance. The amount of intramuscular fat (known as marbling) has significant impact on market value and meat's culinary usefulness. Previoitsly used methods for marbling classification in carcasses based on an analysis of animal 's age, weight and gender, or had invasive nature. These methods were estimated as unreliable and inefficient. There have been noticed growing explorers' interest in drawing conclusions based on information of data coded in a graphic form. The neuronal identification of pictorial data, with special emphasis on both quantitative and qualitative analysis, is more frequently utilized to gain and deepen the empirical data knowledge. Extraction and then classification of selected picture features, such as color or surface structure, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. Thispaper presents an attempt to create noninvasive method to classify marbling, based on ultrasound images, computer image analysis and artificial neural networks.
Ważnym, i dotychczas nierozwiązanym problemem w branży mięsnej jest ocena poziomu zawartości tłuszczu śródmięśniowego w tuszy zwierzęcej. Rozwiązanie problemu identyfikacji ilości tłuszczu śródmięśniowego na podstawie informacji pozyskanej z obrazów USG tusz zwierzęcych, a także żywych zwierząt, ma istotne znaczenie utylitarne. Ilość tłuszczu śródmięśniowego (tzw. marmurkowatość) ma znaczny wpływ na wartość rynkową i przydatność kulinarną mięsa. Stosowane dotychczas metody oceny otłuszczenia zwierząt bazują na analizie ich wieku, masy ciała oraz płci lub maja charakter inwazyjny. Metody te są zawodne oraz mało efektywne. Widoczny jest wzrost zainteresowania wyciąganiem wniosków bazując na danych zakodowanych w formie graficznej. Neuronowa analiza obrazu, ze szczególnym uwzględnieniem analiz ilościowych i jakościowych, jest coraz częściej wykorzystywana analizy danych empirycznych. Wydobycie a następnie klasyfikacja wybranych cech obrazu, takich jak kolor, kształt czy tekstura, możliwa jest dzięki wykorzystaniu systemów informatycznych analizujących i przetwarzających obrazy cyfrowe. W artykule przedstawiono próbą wytworzenia nieinwazyjnej metody klasyfikacji marmurkowatości, z wykorzystaniem zdjęć USG, komputerowej analizy obrazu oraz sztucznych sieci neuronowych.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2011, 56, 1; 114-117
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja wybranych odmian jabłek oraz suszu marchwi z wykorzystaniem sieci neuronowych typu Kohonena
Classification of selected apples varieties and dried carrots using neural network type kohonen
Autorzy:
Boniecki, P.
Koszela, K.
Przybylak, A.
Powiązania:
https://bibliotekanauki.pl/articles/334443.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
klasyfikacja
jabłko
odmiana
marchew
sieć neuronowa
classification
apple
carrot
variety
neural network
Opis:
Celem badań była analiza zdolności klasyfikacyjnych modelu neuronowego typu Kohonena, uczonego metodą "nie nadzorowaną". Klasyfikacji poddano trzy wyselekcjonowane odmiany jabłek, które często występują w sadach na terenie Polski. Ze względów porównawczych, podobną analizę przeprowadzono w celu identyfikacji jakości suszu warzywnego. Neuronowej klasyfikacji dokonano w oparciu o informację zakodowaną w postaci zbioru cyfrowych obrazów jabłek oraz suszu marchwi. Jako cechy charakterystyczne, stanowiące podstawę do przeprowadzenia klasyfikacji, przyjęto reprezentacje w postaci palety dominujących barw występujących w kolorze owoców i suszu warzywnego oraz wybranych współczynników kształtu.
The purpose of this study was the analysis of ability classification neural model type Kohonen. Classification has been selected three varieties of apples, which often appear in Polish orchards in the area. For purposes of comparison, a similar analysis was performed to identify the quality of dried vegetables. Neural classification was based on the information encoded in the form of a set of digital images apples and dried. As the characteristics feature adopted color and shape of apples and dried carrots.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 1; 11-15
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody prognozowania wybranych zagadnień inżynerii rolniczej z wykorzystaniem sztucznych sieci neuronowych
The methods of predicting the issues of agricultural engineering with the use of artificial neural networks
Autorzy:
Dejewska, T.
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/335271.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
prognoza
artificial neural network
agricultural engineering
predicting
Opis:
Celem pracy było omówienie neuronowych metod prognozowania oraz porównanie ich efektywności w wybranych zagadnieniach inżynierii rolniczej przy użyciu sztucznych sieci neuronowych. Wskazano przy tym topologie sieci, które w rozwiązaniu problemów predykcyjnych charakteryzowały się najlepszą skutecznością.
The aim of the following thesis was the description of chosen methods of the prediction and the comparison of their efficiency in the field of agricultural engineering with the use of artificial neural networks. There were also pointed the typolgies of networks which turned out to be the most effective in the process of solving the prediction problems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 28-31
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka badawcza oraz przygotowanie zbiorów uczących dla sieci neuronowych identyfikujących jakość kompostu
Research methodology and preparation of learning datasets for neural networks identifying compost quality
Autorzy:
Jakubek, A.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/286658.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kompost
analiza obrazu
sieć neuronowa
sztuczna inteligencja
compost
image analysis
neural network
artificial intelligence
Opis:
Nie istnieje tania i szybka metoda określania stopnia dojrzałości kompostu, która mogłaby zostać przeprowadzona przez osobę nie posiadającą doświadczenia w tej dziedzinie. Podjęto zatem próbę jej estymacji wykorzystując jako narzędzie sztuczne sieci neuronowe. Opisana metodyka przestawia kolejne etapy prac badawczych przeprowadzonych w celu pozyskania reprezentatywnych danych do trenowania inteligentnych systemów klasyfikujących.
There is no cheap and quick method for determining the degree of compost maturity, which could be carried out by a person having no experience in this field. Therefore, there has been an attempt made to estimate it using artificial neural networks as a tool. Described methodology presents subsequent stages of research works carried out in order to acquire representative data for training intelligent classifying systems.
Źródło:
Inżynieria Rolnicza; 2011, R. 15, nr 1, 1; 85-90
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konwersja obrazów cyfrowych do postaci zbiorów uczących dla potrzeb modelowania neuronowego
Conversion of digital images into the form of teaching sets for the purposes of neural modeling
Autorzy:
Przybylak, A.
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/287969.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
przetwarzanie obrazu
analiza obrazu
piksel
zbiór uczący
sieć neuronowa
image processing
image analysis
pixel
teaching set
neural network
Opis:
Wykorzystanie sztucznych sieci neuronowych na potrzeby analizy obrazu wymaga prawidłowego przygotowania zbiorów uczących. W przypadku pozyskiwania informacji z obrazów cyfrowych konieczna jest ich konwersja do postaci akceptowanej przez sztuczną sieć neuronową. Niezwykle istotne jest, aby do struktury zbioru uczącego trafiły cechy reprezentatywne, pozwalające na poprawne działanie modelu neuronowego. W przedstawionym w pracy systemie użytkownik ma możliwość wyboru danych, które umieści w zbiorze uczącym. W aktualnej wersji systemu mogą to być informacje o barwie, na które składają się: histogram, tekstura oraz składowe modelu RGB.
Using artificial neural networks for image analysis purposes requires proper preparation of teaching sets. In case of information acquisition from digital images it is necessary to convert them into the form accepted by an artificial neural network. It is extremely important to incorporate representative features allowing correct operation of neural model into the teaching set structure. In the system presented in this work user is able to select data, which will be included in the teaching set. In current system version this may be information on colour, which includes: histogram, texture and the RGB model components.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 9, 9; 201-206
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja procesów decyzyjnych przy zastosowaniu wybranych metod sztucznej inteligencji
Optimization of decision processes using chosen methods of artificial intelligence
Autorzy:
Nowakowski, K.
Boniecki, P.
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/288891.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
system ekspercki
optymalizacja
proces decyzyjny
artificial neural network
expert system
optimization
decision cases
Opis:
Już od dawna ludzie poszukują narzędzi, które pomogłyby im w procesie podejmowania trafnych decyzji. Ze względu na nikłe jak do tej pory sukcesy rozsądnym wydaje się być wykorzystanie w tym celu wybranych metod sztucznej inteligencji. Użycie w/w technologii opartych na symulacji pracy ludzkiego umysłu daje nowe możliwości. Połączenie techniki sztucznych sieci neuronowych i systemów ekspertowych pozwoliło na stworzenie wirtualnych doradców - specjalistów w wybranej dziedzinie. Pozwalają oni skutecznie pomóc w podejmowaniu konkretnych decyzji. Nie zrobią tego za człowieka ale dzięki wykorzystanym technologią mogą pomóc w podjęciu optymalnej decyzji.
Since a long time humans seek tools which would help them take accurate decisions. Because of very little success so far, choosing methods of artificial intelligence seems to be reasonable. Using mentioned technologies based on simulation of work of human mind gives new possibilities. The connection of technique of artificial neural network and expert systems permitted to create virtual advisers' - experts in chosen field. They permit to help treat concrete decisions effectively. They will not make it instead of humans but thanks to used technology they can help undertake optimal decision.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 131-136
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies