Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "proces, A." wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Sztuczne sieci neuronowe jako narzędzie wspomagające proces numerycznego przetwarzania w problemach inżynierii rolniczej
The artificial neural networks as a helping tool in the process of numerical agricultural engineering problems
Autorzy:
Boniecki, P.
Paryś, A.
Powiązania:
https://bibliotekanauki.pl/articles/336080.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
przetwarzanie numeryczne
macierz odwrotna
agricultural engineering
artificial neural network
numerical processing
inverted matrix
Opis:
Proces dyskretyzacji ciągłego zagadnienia różniczkowego (wraz z warunkami początkowo-brzegowymi) prowadzi do uzyskania liniowego układu równań algebraicznych. Rozwiązanie takiego układu równań wymaga znajomości postaci macierzy odwrotnej układu. Jednokierunkowe sieci neuronowe mogą być efektywnie wykorzystane w algebrze macierzowej do realizacji wielu standardowych operacji macierzowych, w tym również do odwracania macierzy. Wymienione wyżej modele neuronowe pozwalają w trakcie ich eksploatacji na uzyskanie dużej szybkości działania (praktycznie działania w czasie rzeczywistym). Problemem zasadniczym, w powyższym kontekście, jest właściwe określenie funkcji energetycznej, której minimalizacja pozwala na zaprojektowanie, wygenerowanie oraz nauczenie odpowiedniej topologii sieci neuronowej. Celem pracy była analiza możliwości wykorzystanie nowoczesnych technik sztucznych sieci neuronowych do generowania postaci macierzy odwrotnej.
The discretization process of the cotinuous differential issue (with the initial-border conditions) leads to obtaining the linear set of algebraic equations. To resolve such a set of equations, the knowledge about the inverted form of system matrix is required. One-directional neural networks can be effectively used in matrix algebra to conduct lots of standard matrix operations, including matrix inversion. The neural models listed above during exploitation let to obtain a great functional speed (nearly real time work). The basic problem, in mentioned context, is the proper definition of an energetic function, minimalization of which lets to design, generate and learn the proper neural network topology. The aim of work was analysis of the possibilities of using modern techniques of artificial neural networks to generate the inverted matrix form.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design project of a system of wireless sensors network supporting the fields irrigation process
Projekt systemu sieci bezprzewodowych czujników wspierający proces nawadniania pól
Autorzy:
Okoń, P.
Rudowicz-Nawrocka, J.
Boniecki, P.
Kozłowski, R. J.
Jurek, P.
Fojud, A.
Przybył, K.
Powiązania:
https://bibliotekanauki.pl/articles/334168.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
WSN
irrigation of fields
wireless sensor network
nawadnianie pól
sieć czujników bezprzewodowych
Opis:
The aim of this work is to present a project of a network of wireless sensors for the monitoring of plantations in agriculture. The developed project can be used to automate the field irrigation process. The design of the field moisture control system was based on the WSN (Wireless Sensor Network) technology. A measuring element with necessary sensors was also designed for the project. The methodological part of the work includes the network design and the development of the concept of measuring device construction. The Advantech ADAM 2000Z series components were used for the wireless sensor network project.
Celem niniejszej pracy jest prezentacja projektu sieci bezprzewodowych czujników dla potrzeb monitoringu plantacji w rolnictwie. Opracowany projekt może być wykorzystywany do automatyzacji procesu nawadniania pól. Projekt systemu kontroli stopnia uwilgotnienia pola został wykonany na podstawie technologii WSN (ang. Wireless Sensor Network). Na potrzeby projektu został również zaprojektowany element pomiarowy wraz z niezbędnymi czujnikami. Cześć metodyczna pracy obejmuje projekt sieci, oraz opracowanie koncepcji budowy urządzenia pomiarowego. Do projektu bezprzewodowej sieci czujników użyto komponentów firmy Advantech ADAM seria 2000Z.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 162-164
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja procesów decyzyjnych przy zastosowaniu wybranych metod sztucznej inteligencji
Optimization of decision processes using chosen methods of artificial intelligence
Autorzy:
Nowakowski, K.
Boniecki, P.
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/288891.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
system ekspercki
optymalizacja
proces decyzyjny
artificial neural network
expert system
optimization
decision cases
Opis:
Już od dawna ludzie poszukują narzędzi, które pomogłyby im w procesie podejmowania trafnych decyzji. Ze względu na nikłe jak do tej pory sukcesy rozsądnym wydaje się być wykorzystanie w tym celu wybranych metod sztucznej inteligencji. Użycie w/w technologii opartych na symulacji pracy ludzkiego umysłu daje nowe możliwości. Połączenie techniki sztucznych sieci neuronowych i systemów ekspertowych pozwoliło na stworzenie wirtualnych doradców - specjalistów w wybranej dziedzinie. Pozwalają oni skutecznie pomóc w podejmowaniu konkretnych decyzji. Nie zrobią tego za człowieka ale dzięki wykorzystanym technologią mogą pomóc w podjęciu optymalnej decyzji.
Since a long time humans seek tools which would help them take accurate decisions. Because of very little success so far, choosing methods of artificial intelligence seems to be reasonable. Using mentioned technologies based on simulation of work of human mind gives new possibilities. The connection of technique of artificial neural network and expert systems permitted to create virtual advisers' - experts in chosen field. They permit to help treat concrete decisions effectively. They will not make it instead of humans but thanks to used technology they can help undertake optimal decision.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 131-136
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
NEURALNET 2005: Education computer system supporting the use of artificial neural networks in agriculture
NEURALNET 2005: Komputerowy system edukacyjny wspomagający proces wykorzystania sztucznych sieci neuronowych w rolnictwie
Autorzy:
Boniecki, P.
Weres, J.
Krysztofiak, A.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/336078.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
NEURALNET 2005
system komputerowy
edukacja
sztuczna sieć neuronowa
rolnictwo
computer system
artificial neural network
agriculture
education
Opis:
The purpose of this project was to develop an interactive computer application pursuant to software engineering standards that would support education in the field of constructing and operating selected artificial neural network topologies. The project is designed to investigate selected problems having to do with the generation and operation of perceptron and radial network and help to present the networks' operating principles as classification instruments in a case of identifying flower varieties for practical purposes.
Celem pracy było wytworzenie, zgodnie ze standardami inżynierii oprogramowania, interaktywnej aplikacji komputerowej, wspomagającej proces edukacyjny w zakresie konstrukcji oraz eksploatacji wybranych topologii sztucznych sieci neuronowych w kontekście wykorzystania ich w rolnictwie. Ma ona przybliżyć wybrane zagadnienia z zakresu generowania i eksploatacji sieci typu perceptron i sieci radialnej oraz praktycznie zaprezentować zasadę działania tych sieci jako narzędzi klasyfikacyjnych na przykładzie zadania identyfikacji odmian kwiatów.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 10-13
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny piao jako narzędzie do przetwarzania obrazów cyfrowych wspomagające proces generowania zbiorów uczących przeznaczonych do budowy modeli neuronowych
Computer system piao as a tool for processing and gathering digital images in a process of generating learning sets used for construction of models of artificial neural networks
Autorzy:
Zaborowicz, M.
Boniecki, P.
Świerczyński, K.
Powiązania:
https://bibliotekanauki.pl/articles/337395.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
system informatyczny PIAO
obraz cyfrowy
przetwarzanie
model neuronowy
computer system PIAO
neural network
digital images
Opis:
Pozyskiwanie oraz przetwarzanie danych empirycznych występujących w formie graficznej jest istotnym elementem w procesie generowania zbiorów uczących, przeznaczonych do budowy identyfikacyjnych modeli neuronowych. Właściwa analiza oraz konwersja obrazów cyfrowych są fundamentalnym procesem, determinującym dalsze etapy modelowania neuronowego. Powszechnie dostępne metody edycji oraz pozyskiwania danych z obrazów nie zawsze pozwalają na właściwe i efektywne wytworzenie zbioru uczącego. Często zachodzi potrzeba użycia kilku rodzajów komercyjnego oprogramowania, aby w efekcie można było pozyskać zbiór danych empirycznych zapisanych w pożądanej formie. Dlatego wydaje się być zasadnym wytwarzanie od podstaw kompleksowego systemu informatycznego dedykowanego dla wsparcia procesu generowania zbiorów uczących.
Gathering data is an essential element of the process of generating learning sets, intended for the construction of artificial neural networks. A proper analysis and processing of the images are the basis for the next stages of the neural simulation. Commonly available methods of the edition and gaining data from images do not always allow to create a learning set in a right way. Often, there is a need to use several different software in order to gain one eligible set of data. This is a reason, why making a complex software for the process of generating the learning sets, is so important.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2010, 55, 2; 128-133
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies