Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obrazu" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Klasyfikacja ziarniaków kukurydzy w oparciu o neuronową identyfikację kształtu
The classification of maizes kernels with supporting neuronal identification of shape
Autorzy:
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336706.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ziarniak
kukurydza
klasyfikacja
neuronowa analiza obrazu
classification
maize
corn kernel
neuronal image analysis
Opis:
Celem pracy było wytworzenie systemu informatycznego wspomagającego proces klasyfikacji ziarniaków kukurydzy w oparciu o neuronową analizę obrazu. W pracy wykorzystano metodę identyfikacji różnic kształtów analizowanych obiektów w oparciu o tzw. superformułę, zaproponowaną przez Johana Gielisa, pozwalającą na reprezentację dowolnego kształtu za pomocą sześciu niezależnych parametrów.
The aim of work was producing the computer system helping the process of classification of corn kernels using neuronal image analysis. In the project was used method of identification of shapes differences using superformula proposed by John Gielis, permitting on representation of any shape with six independent parameters.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 3; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of neural image analysis in the identification of information encoded in a graphical form
Wykorzystanie neuronowej analizy obrazów w identyfikacji informacji zakodowanej w formie graficznej
Autorzy:
Koszela, K.
Boniecki, P.
Kuzimska, T.
Powiązania:
https://bibliotekanauki.pl/articles/956540.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
identification of class oocytes
quality classification
computer image analysis
image analysis
artificial neural networks
identyfikacja klas oocytów
klasyfikacja jakościowa
analiza obrazu
sztuczne sieci neuronowe
Opis:
Numerous scientific and research centres are searching for solutions concerning the problem of quality classification of animal oocytes. Conducting such studies is purposeful, particularly in the context of constant attempts to improve the quality of food products, which depends on the breeding value of livestock. Therefore, searching for methods of stimulation of proper development of a larger number of animal oocytes, particularly in extracorporeal conditions, gains special importance. An increasing interest in assisted reproduction techniques resulted in searching for new, increasingly effective methods of quality assessment of mammalian gametes and embryos. The expected progress in the production of animal embryos in vitro is largely dependent on proper classification of obtained oocytes. The aim of this work was to develop a non-invasive method for the quality assessment of oocytes, performed on the basis of graphic information encoded in the form of monochromatic digital images obtained via microscopy techniques. The classification process was conducted based on the information presented in the form of microphotography pictures of domestic pig oocytes, using advanced methods of neural image analysis.
Rozwiązaniem problemu klasyfikacji jakościowej oocytów zwierzęcych zajmuje się wiele różnych ośrodków naukowo-badawczych. Celowość prowadzenia takich badań jest uzasadniona szczególnie w kontekście ciągłego dążenia do podnoszenia jakości produktów żywnościowych, która jest pochodną wartości hodowlanej zwierząt gospodarskich. W związku z tym, istotnego znaczenia nabierają poszukiwania metod prowadzących do stymulowania prawidłowego rozwoju większej liczby zapładnianych oocytów zwierzęcych, zwłaszcza realizowanego w warunkach pozaustrojowych. Rosnące zainteresowanie technikami wspomaganego rozrodu stało się przyczyną poszukiwania nowych, coraz bardziej efektywnych metod oceny jakościowej gamet oraz zarodków ssaków. Oczekiwany postęp w produkcji zarodków in vitro zwierząt uzależniony jest w istocie od poprawnej klasyfikacji pozyskiwanych oocytów. Celem pracy było opracowanie bezinwazyjnej metody oceny jakościowej oocytów dokonywanej w oparciu o informację graficzną zakodowana w postaci monochromatycznych obrazów cyfrowych pozyskanych metodą mikroskopową. Proces klasyfikacji zrealizowano w oparciu o informację prezentowaną w formie zdjęć mikrofotograficznych oocytów świni domowej, wykorzystując w tym celu nowoczesne metody neuronowej analizy obrazu.
Źródło:
Agricultural Engineering; 2015, 19, 3; 25-35
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies