Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "agricultural models" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Wybór reprezentatywnej struktury zbiorów uczących dla potrzeb neuronowych modeli identyfikacyjnych wykorzystywanych w inżynierii rolniczej
Selection of representative structure of learning sets for purpose of neuron identification models used in agricultural engineering
Autorzy:
Nowakowski, K.
Boniecki, P.
Weres, J.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/287545.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
reprezentatywne dane uczące
sieć neuronowa
analiza obrazu
inżynieria rolnicza
agricultural engineering
representative learning data
neural network
image analysis
Opis:
Wykorzystanie sztucznych sieci neuronowych do identyfikacji mechanicznych uszkodzeń ziarniaków na podstawie ich fotografii wymaga doboru odpowiednich cech charakterystycznych na podstawie, których zostanie przeprowadzony proces rozpoznawania. Ponieważ stosowanie sieci neuronowych do bezpośredniego mapowania zbiorów graficznych jest nieefektywne, wskazane jest użycie bloku przetwarzania wstępnego, tzw. preprocesora. Zaprojektowanie i wytworzenie właściwego systemu informatycznego dla tak sformułowanego celu pozwoliło na dokonanie transformacji danych pierwotnych (zdjęcia fotograficzne) do reprezentacji danych, która będzie odpowiednia dla wykorzystania w procesie uczenia sieci neuronowej.
Use of artificial neural networks for identification of the mechanical damages to grains based on photographs requires a selection of appropriate characteristic features in order to conduct a recognition process. Since the application of neural networks for direct mapping of graphic sets is not really effective, it is recommended to use the initial processing block, so called preprocessor. Design and creation of a proper information system for this particular purpose allowed to transform raw data (photographic images) for data representation, appropriate to be used in the learning process of neural network.
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 6 (94), 6 (94); 183-188
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa neuronowych modeli prognostycznych na przykladzie wybranych zagadnien inzynierii rolniczej
Construction of neural forecasting models for example of selected issues in agricultural engineering
Autorzy:
Dejewska, T
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/883707.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zbiory danych
modelowanie
modele prognostyczne
inzynieria rolnicza
sieci neuronowe sztuczne
uczenie sie
Opis:
Celem pracy było omówienie metodyki budowy modeli prognostycznych w oparciu o sztuczne sieci neuronowe. Podczas konstruowania modelu neuronowego realizującego predykcję występują często złożone problemy. Z uwagi na to przybliżono metody pozwalające na poprawny przebieg poszczególnych etapów budowy. Przedstawiono również wartość poznawczą i skuteczność działania tych modeli dla inżynierii rolniczej.
The aim of the following thesis was the description of methods of building of prognostic models with the use of the artificial neural networks. During constructing of neuronal model of prediction, a variety of complex problems may often appear. In consideration of those problems, some methods enabling appropriate course of each of the stages of building the model were presented. Moreover, a cognitive value and effectiveness of working of those models in the agricultural engineering were introduced.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2009, 05; 7-10
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies