Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "5G" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
MIMO Beam Selection in 5G Using Neural Networks
Autorzy:
Ruseckas, Julius
Molis, Gediminas
Bogucka, Hanna
Powiązania:
https://bibliotekanauki.pl/articles/2055220.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
5G
context information
MIMO beam orientation
machine learning
neural networks
Opis:
In this paper, we consider cell-discovery problem in 5G millimeter-wave (mmWave) communication systems using multiple input, multiple output (MIMO) beam-forming technique. Specifically, we aim at the proper beam selection method using context-awareness of the user-equipment to reduce latency in beam/cell identification. Due to high path-loss in mmWave systems, beam-forming technique is extensively used to increase Signal-to-Noise Ratio (SNR). When seeking to increase user discovery distance, narrow beam must be formed. Thus, a number of possible beam orientations and consequently time needed for the discovery increases significantly when random scanning approach is used. The idea presented here is to reduce latency by employing artificial intelligence (AI) or machine learning (ML) algorithms to guess the best beam orientation using context information from the Global Navigation Satellite System (GNSS), lidars and cameras, and use the knowledge to swiftly initiate communication with the base station. To this end, here, we propose a simple neural network to predict beam orientation from GNSS and lidar data. Results show that using only GNSS data one can get acceptable performance for practical applications. This finding can be useful for user devices with limited processing power.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 4; 693--698
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection
Autorzy:
Wasilewska, Małgorzata
Bogucka, Hanna
Powiązania:
https://bibliotekanauki.pl/articles/226216.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
spectrum sensing
cognitive radio
machine learning
energy detection
4G
LTE
5G
k-nearest neighbors
random forest
Opis:
In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbor sand Random Forest show that these methods significantly improves the detection probability.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 1; 217-223
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies