Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "procesy membranowe" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Wstępne wyniki badań w kierunku uzyskania koncentratu na bazie wybranych wód zmineralizowanych
Preliminary results of tests for obtaining a concentrate based on selected mineralized water
Autorzy:
Tomaszewska, B.
Tyszer, M.
Bodzek, M.
Bujakowski, W.
Powiązania:
https://bibliotekanauki.pl/articles/203551.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wody mineralne
koncentrat
procesy membranowe
odwrócona osmoza
mineral water
concentrate
membrane processes
reverse osmosis
Opis:
W artykule przedstawiono wyniki badań mających na celu zatężenie składu chemicznego naturalnej zmineralizowanej wody i pozyskanie koncentratu użytecznego dla celów balneologicznych. Pierwotna mineralizacja ogólna badanej surowej wody wynosiła 11 010 mg/dm3 i zawierała 10,06 mg/dm3 kwasu metakrzemowego. W rezultacie zatężania wody, w procesie odwróconej osmozy wyposażonej w membranę BW30FR-400, otrzymano wysokiej jakości nowy produkt. Mineralizacja skoncentrowanej wody mineralnej wynosiła 18 238,5 mg/dm3 przy stężeniu 18,48 mg/dm3 kwasu metakrzemowego. Dodatkowo otrzymano wysokiej jakości permeat, jako produkt możliwy do wykorzystania jako woda przeznaczona do spożycia przez ludzi. Wyniki badań dały nowe światło dla zastosowań technicznych.
The paper presents the results of research aimed at concentrating the mineralized water. The aim of the research was to obtain more concentrated mineral water as concentrates useful for balneological purposes. The mineralization of tested raw mineral water was 11 010 mg/dm3 and contained 2.8 mg/dm3 of boron-and 10.06 mg/dm3 of metasilicic acid. As a result of water concentrating in the RO process with a BW30FR-400 membrane, a high quality of a new product – concentrate has been achieved. The mineralization of concentrated mineral water was a 18 238.5 mg/dm3 with 18.48 mg/dm3 metasilicic acid concentration. In additional the high quality of the permeate was also obtained as a product possible for use as potable water. The results of research gave new light for the technical application.
Źródło:
Technika Poszukiwań Geologicznych; 2016, R. 55, nr 2, 2; 169-178
0304-520X
Pojawia się w:
Technika Poszukiwań Geologicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fluorki w środowisku wodnym – zagrożenia i metody usuwania
Fluorine in the water environment - hazards and removal methods
Autorzy:
Bodzek, M.
Konieczny, K.
Powiązania:
https://bibliotekanauki.pl/articles/297154.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
water treatment
fluoride removal
coagulation
precipitation
adsorption
membrane processes
uzdatnianie wody
usuwanie fluorków
koagulacja
wytrącanie
adsorpcja
procesy membranowe
Opis:
High fluorine concentrations in aquatic environment, even above 30 mg/L, are often detected in many parts of the world. Due to fluorine effects on health, World Health Organization (WHO) as well as national health authorities have established its maximum permissible concentration in drinking water at the level of 1.5 mg/L. This review article aims to provide detail information on researchers’ efforts in the field of fluorides removal during potable water production. The contaminant elimination methods have been broadly divided in three sections, i.e. coagulation/precipitation, adsorption and membrane techniques. Both, precipitation with the use of calcium salts or coagulation with aluminum sulphate and ferric salts followed by sedimentation are used for fluorine removal. In electrocoagulation, a coagulant is generated in situ by means of oxidation of anode usually made of aluminum or iron. The removal of fluorides from water and wastewater can be performed with the use of many different types of adsorbents, which are either applied already at industrial scale or still tested in the laboratory or pilot scale. The adsorption on activated aluminum oxide is already a common technology of fluorine removal from water and wastewater, and it is also indicated as the one of the best available technique (BAT) in this field. However, the adsorbent price is relatively high, while its efficiency mostly depends on pH and co-ions presence. Recently, a lot of effort has been devoted to develop an effective method of aluminum oxide modification with the use of metals’ oxides impregnation, which reveal significant defluoridation efficiency. The applicability of carbon based sorbents is less efficient than of aluminum compounds, hence a number of studies on modification of carbon based materials towards defluoridation improvement are carried out. The special attention is dedicated to carbon nanotubes. Among many natural materials, which are usable to fluorine adsorption, many different types of clays and minerals have been tested. Biosorbents, especially modified chitosan, also offer promising results in fluorine removal process. Additionally, a group of waste materials, which contain metal oxides, have also been examined to fluorides concentration decrease in contaminated aqueous streams, and those can be considered as alternative cheap sorbents. Synthetic layered double hydroxides (LDHs), hydrocalcite like compounds and nanosorbents have also gained a lot of attention as potential fluorine adsorbent, as they reveal high affinity toward the contaminant. Among membrane techniques reverse osmosis, nanofiltration, ultrafiltration in integrated systems, electrodialysis and Donnan dialysis have been discussed. The most important benefits offered by membrane processes are very high removal efficiency (up to 98%), single stage treatment, simultaneous water disinfection and low requirement for additional chemicals. However, the removal of other anions present in treated water is a serious disadvantage of those techniques, as it results in the need of water remineralization to assure the proper quality of finally produced potable water. Additionally, membrane processes are quite expensive due to relatively high initial concentrated solution containing fluorine may become a significant problem.
Występowanie fluorków (F-) w wodach naturalnych jest związane z ich obecnością w skorupie ziemskiej, jak również aktywnością przemysłową człowieka. O ile obecność jonów F- w wodzie do picia w ilości 0,5÷0,7 mg/l zabezpiecza przed próchnicą zębów, o tyle ich nadmiar jest uważany za poważny problem zdrowotny. Regularne spożywanie wysoce fluorowanej wody, zawierającej 1,5÷4 mg F/l, wywołuje wiele chorób związanych z tkanką kostną (fluoroza, artretyzm i osteoporoza), chorobę Alzheimera, utratę pamięci i inne neurologiczne dolegliwości. Według World Health Organization, a także polskich przepisów, maksymalne stężenie fluorków w wodzie do picia nie może przekraczać 1,5 mg/l, a rekomendowany jest zakres 0,5÷1 mg/l. Opracowano szereg metod usuwania fluorków, które można podzielić na trzy grupy procesów: koagulacja i wytrącanie, membranowe techniki separacji oraz adsorpcja/wymiana jonowa.
Źródło:
Inżynieria i Ochrona Środowiska; 2018, 21, 2; 113-141
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of membrane techniques in the removal of inorganic impurities from water environment- state of art
Zastosowanie technik membranowych w usuwaniu zanieczyszczeń nieorganicznych ze środowiska wodnego - stan wiedzy
Autorzy:
Bodzek, M.
Konieczny, K.
Powiązania:
https://bibliotekanauki.pl/articles/401228.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
procesy membranowe
usuwanie związków nieorganicznych
odsalanie i zmiękczanie wody
usuwanie anionów i metali
membrane processes
removal of inorganic
compounds
water desalination and softening
Opis:
Introduction and development of membrane technology in the production of drinking water, in the last 30 years, is considered as a significant step in the field of water treatment effectiveness, comparable with the introduction of sand filters at the beginning of 20 age. The special role played the high- and low- pressure-driven membrane processes as well as electrodialysis. Desalination of seawater and brackish groundwater is often the way to obtaining drinking water. Significant improvements in technology and design of reverse osmosis, the availability of alternative energy sources, the possibility of pretreatment and applied materials have caused the process to become environmentally-friendly source of fresh water in many regions of the world, particularly in those where their sources are limited. In the 1980s increased interest of nan filtration and to some extent the reverse osmosis as the methods of water softening, while in the 1990s. they start to be applied to remove micro-pollutants, also inorganic. To remove nitrate ions and fluoride, boron and metals (Fe, Mn and heavy metals) is successfully applied reverse osmosis, nan filtration and electro dialysis, as well as bioreactors and ultrafiltration integrated with coagulation and oxidation.
Wprowadzenie i rozwój technik membranowych w produkcji wody do picia, w ostatnich 30. latach, jest uważane jako znaczący krok w dziedzinie skuteczności uzdatniania wody, porównywalny z wprowadzeniem filtrów piaskowych na początku 20. wieku. Szczególną rolę odegrały w tym zakresie wysoko- jak i niskociśnieniowe procesy membranowe oraz elektrodializa. Odsalanie wody morskiej i zasolonych wód podziemnych jest częstym sposobem otrzymywania wody do picia. Znaczne ulepszenia w technologii i projektowaniu procesu odwróconej osmozy, dostępność alternatywnych źródeł energii, możliwości wstępnego oczyszczania oraz stosowanych materiałów spowodowały, że proces stał się przyjaznym ekologicznie źródłem wody słodkiej w wielu regionach świata, szczególnie w tych, gdzie ich źródła są ograniczone. W latach 80. wzrosło zainteresowanie nanofiltracją i w pewnym zakresie odwróconą osmozą jako metodami zmiękczania wody, natomiast w latach 90. zaczęto je stosować do usuwania mikrozanieczyszczeń, w tym nieorganicznych. Do usuwania jonów azotanowych i fluorkowych, boru oraz metali (Fe, Mn i metale ciężkie) z powodzeniem stosuje się odwróconą osmozę, nanofiltrację i elektrodializę, jak również bioreaktory membranowe oraz ultrafiltrację wspomaganą koagulacją i utlenieniem.
Źródło:
Inżynieria Ekologiczna; 2011, 26; 18-36
2081-139X
2392-0629
Pojawia się w:
Inżynieria Ekologiczna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies