Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "współczynniki cepstralne" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
A cough-based COVID-19 detection with gammatone and Mel-frequency cepstral coefficients
Autorzy:
Benmalek, Elmehdi
El Mhamdi, Jamal
Jilbab, Abdelilah
Jbari, Atman
Powiązania:
https://bibliotekanauki.pl/articles/2203646.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
COVID-19
cough recordings
machine learning
mel-frequency cepstral coefficients
gammatone cepstral coefficients
feature selection
uczenie maszynowe
współczynniki mel-cepstralne
Opis:
Many countries have adopted a public health approach that aims to address the particular challenges faced during the pandemic Coronavirus disease 2019 (COVID-19). Researchers mobilized to manage and limit the spread of the virus, and multiple artificial intelligence-based systems are designed to automatically detect the disease. Among these systems, voice-based ones since the virus have a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we distinguished positive COVID patients from healthy controls. After the gammatone cepstral coefficients (GTCC) and the Mel-frequency cepstral coefficients (MFCC) extraction, we have done the feature selection (FS) and classification with multiple machine learning algorithms. By combining all features and the 3-nearest neighbor (3NN) classifier, we achieved the highest classification results. The model is able to detect COVID-19 patients with accuracy and an f1-score above 98 percent. When applying FS, the higher accuracy and F1-score were achieved by the same model and the ReliefF algorithm, we lose 1 percent of accuracy by mapping only 12 features instead of the original 53.
Źródło:
Diagnostyka; 2023, 24, 2; art. no. 2023214
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies