Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "selfadjoint" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Functional models for Nevanlinna families
Autorzy:
Behrndt, J.
Hassi, S.
Snoo, H. de
Powiązania:
https://bibliotekanauki.pl/articles/255065.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
symmetric operator
selfadjoint extension
boundary relation
Weyl family
functional model
reproducing kernel Hilbert space
Opis:
The class of Nevanlinna families consists of R-symmetric holomorphic multivalued functions on C \ R with maximal dissipative (maximal accumulative) values on C+ (C-, respectively) and is a generalization of the class of operator-valued Nevanlinna functions. In this note Nevanlinna families are realized as Weyl families of boundary relations induced by multiplication operators with the independent variable in reproducing kernel Hilbert spaces.
Źródło:
Opuscula Mathematica; 2008, 28, 3; 233-245
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eigenvalue estimates for operators with finitely many negative squares
Autorzy:
Behrndt, J.
Mows, R.
Trunk, C.
Powiązania:
https://bibliotekanauki.pl/articles/255926.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
selfadjoint operator
Krein space
finitely many negative squares
eigenvalue estimate
indefinite Sturm-Liouville operator
Opis:
Let A and B be selfadjoint operators in a Krein space. Assume that the resolvent difference of A and B is of rank one and that the spectrum of A consists in some interval I ⊂ R of isolated eigenvalues only. In the case that A is an operator with finitely many negative squares we prove sharp estimates on the number of eigenvalues of B in the interval I. The general results are applied to singular indefinite Sturm-Liouville problems.
Źródło:
Opuscula Mathematica; 2016, 36, 6; 717-734
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies