Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "XGBoost" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Overcoming Overfitting Challenges with HOG Feature Extraction and XGBoost-Based Classification for Concrete Crack Monitoring
Autorzy:
Barkiah, Ida
Sari, Yuslena
Powiązania:
https://bibliotekanauki.pl/articles/27311909.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
HOG
XGBoost
classification
feature extraction
concrete crack monitoring
Opis:
This study proposes a method that combines Histogram of Oriented Gradients (HOG) feature extraction and Extreme Gradient Boosting (XGBoost) classification to resolve the challenges of concrete crack monitoring. The purpose of the study is to address the common issue of overfitting in machine learning models. The research uses a dataset of 40,000 images of concrete cracks and HOG feature extraction to identify relevant patterns. Classification is performed using the ensemble method XGBoost, with a focus on optimizing its hyperparameters. This study evaluates the efficacy of XGBoost in comparison to other ensemble methods, such as Random Forest and AdaBoost. XGBoost outperforms the other algorithms in terms of accuracy, precision, recall, and F1-score, as demonstrated by the results. The proposed method obtains an accuracy of 96.95% with optimized hyperparameters, a recall of 96.10%, a precision of 97.90%, and an F1-score of 97%. By optimizing the number of trees hyperparameter, 1200 trees yield the greatest performance. The results demonstrate the efficacy of HOG-based feature extraction and XGBoost for accurate and dependable classification of concrete fractures, overcoming the overfitting issues that are typically encountered in such tasks.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 3; 571--577
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies