- Tytuł:
- Construction of Cospectral Integral Regular Graphs
- Autorzy:
-
Bapat, Ravindra B.
Karimi, Masoud - Powiązania:
- https://bibliotekanauki.pl/articles/31341716.pdf
- Data publikacji:
- 2017-08-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
eigenvalue
cospectral graphs
adjacency matrix
integral graphs - Opis:
- Graphs $G$ and $H$ are called cospectral if they have the same characteristic polynomial. If eigenvalues are integral, then corresponding graphs are called integral graph. In this article we introduce a construction to produce pairs of cospectral integral regular graphs. Generalizing the construction of $ G_4(a, b)$ and $G_5(a, b)$ due to Wang and Sun, we define graphs \( \mathcal{G}_4(G,H) \) and \( \mathcal{G}_5(G,H)\) and show that they are cospectral integral regular when $G$ is an integral q-regular graph of order $m$ and $H$ is an integral q-regular graph of order $(b − 2)m$ for some integer $b \ge 3$.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2017, 37, 3; 595-609
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki