Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bao, Y." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Spectral Mapping Using Kernel Principal Components Regression for Voice Conversion
Autorzy:
Song, P.
Zhao, L.
Bao, Y.
Powiązania:
https://bibliotekanauki.pl/articles/177529.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
spectral mapping
overfitting
oversmoothing
discontinuity
kernel principal component regression
Opis:
The Gaussian mixture model (GMM) method is popular and efficient for voice conversion (VC), but it is often subject to overfitting. In this paper, the principal component regression (PCR) method is adopted for the spectral mapping between source speech and target speech, and the numbers of principal components are adjusted properly to prevent the overfitting. Then, in order to better model the nonlinear relationships between the source speech and target speech, the kernel principal component regression (KPCR) method is also proposed. Moreover, a KPCR combined with GMM method is further proposed to improve the accuracy of conversion. In addition, the discontinuity and oversmoothing problems of the traditional GMM method are also addressed. On the one hand, in order to solve the discontinuity problem, the adaptive median filter is adopted to smooth the posterior probabilities. On the other hand, the two mixture components with higher posterior probabilities for each frame are chosen for VC to reduce the oversmoothing problem. Finally, the objective and subjective experiments are carried out, and the results demonstrate that the proposed approach shows greatly better performance than the GMM method. In the objective tests, the proposed method shows lower cepstral distances and higher identification rates than the GMM method. While in the subjective tests, the proposed method obtains higher scores of preference and perceptual quality.
Źródło:
Archives of Acoustics; 2013, 38, 1; 39-45
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shrinkage Porosity Criterion and Its Application to A 5.5 Ton Steel Ingot
Autorzy:
Zhang, C.
Bao, Y.
Wang, M.
Zhang, L.
Powiązania:
https://bibliotekanauki.pl/articles/382021.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry industry
quality management
shrinkage porosity
ingot solidification
application of information technology
numerical simulation
przemysł odlewniczy
zarządzanie jakością
porowatość
krzepnięcie
zastosowanie technologii informatycznych
symulacja numeryczna
Opis:
In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of 2Cr13 steel with criterion R√L>0.21 m・℃1/2・s-3/2 agreed well with the results of experimental sectioning. Based on this criterion, optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated the centreline porosity and further proved the applicability of this criterion.
Źródło:
Archives of Foundry Engineering; 2016, 16, 2; 27-32
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Focusing of linearly polarized helico-conical Lorentz beam with sine-azimuthal variation wavefront
Autorzy:
Bao, Y.
Lan, J.
Miao, Y.
Zhang, D.
Gao, X.
Powiązania:
https://bibliotekanauki.pl/articles/174305.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
Lorentz beam
focusing properties
optical vortex
Opis:
In this article a theoretical research is described into focusing of a linearly polarized helico-conical Lorentz beam with a sine-azimuthal variation wavefront. The simulation results show the vortex charge on the axis, which has an obvious modulation effect on the focal modes of the Lorenz beam under certain beam parameters and phase parameters. Both the phase parameter and the vortex charge are zero, the focal spot appears round. The focal spot is symmetric about y axis when the charge is 0 and the phase parameter is adjusted. And the focal evolution patterns vary remarkably under different beam parameters and the phase parameters. In the process of focus evolution, there appears some novel focal patterns, such as a circle, a “T”, a butterfly, a small running humanoid, a whale tail, a flower of four leaves, a serpentine, a goldfish, a Chinese knot and an octopus, which indicates that the focus mode of the optical vortex Lorentz beam can be altered by changing the phase parameters and vortex charge.
Źródło:
Optica Applicata; 2018, 48, 3; 373-387
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech emotion recognition under white noise
Autorzy:
Huang, C.
Chen, G.
Yu, H.
Bao, Y.
Zhao, L.
Powiązania:
https://bibliotekanauki.pl/articles/177301.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
speech emotion recognition
speech enhancement
emotion model
Gaussian mixture model
Opis:
Speaker‘s emotional states are recognized from speech signal with Additive white Gaussian noise (AWGN). The influence of white noise on a typical emotion recogniztion system is studied. The emotion classifier is implemented with Gaussian mixture model (GMM). A Chinese speech emotion database is used for training and testing, which includes nine emotion classes (e.g. happiness, sadness, anger, surprise, fear, anxiety, hesitation, confidence and neutral state). Two speech enhancement algorithms are introduced for improved emotion classification. In the experiments, the Gaussian mixture model is trained on the clean speech data, while tested under AWGN with various signal to noise ratios (SNRs). The emotion class model and the dimension space model are both adopted for the evaluation of the emotion recognition system. Regarding the emotion class model, the nine emotion classes are classified. Considering the dimension space model, the arousal dimension and the valence dimension are classified into positive regions or negative regions. The experimental results show that the speech enhancement algorithms constantly improve the performance of our emotion recognition system under various SNRs, and the positive emotions are more likely to be miss-classified as negative emotions under white noise environment.
Źródło:
Archives of Acoustics; 2013, 38, 4; 457-463
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies