Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vectors" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Balancing vectors and convex bodies
Autorzy:
Banaszczyk, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/1292627.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
balancing vectors
Steinitz constant
Opis:
Let U, V be two symmetric convex bodies in $ℝ^n$ and |U|, |V| their n-dimensional volumes. It is proved that there exist vectors $u_1,...,u_n ∈ U$ such that, for each choice of signs $ε_1,...,ε_n = ± 1$, one has $ε_1 u_1 + ... + ε_n u_n ∉ rV$ where $r = (2πe^2)^{-1/2} n^{1/2}(|U|/|V|)^{1/n}$. Hence it is deduced that if a metrizable locally convex space is not nuclear, then it contains a null sequence $(u_n)$ such that the series $∑_{n = 1}^∞ ε_n u_{π(n)}$ is divergent for any choice of signs $ε_n = ± 1$ and any permutation π of indices.
Źródło:
Studia Mathematica; 1993, 106, 1; 93-100
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies