Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Balic, J." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Combined system for off-line optimization and adaptive cutting force control
Autorzy:
Cus, F.
Balic, J.
Powiązania:
https://bibliotekanauki.pl/articles/100078.pdf
Data publikacji:
2010
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
manufacturing processes
adaptive cutting force control
milling simulator
neural control strateg
off-line optimization
Opis:
The choice of manufacturing processes is based on cost, time and precision. A remaining drawback of modern CNC systems is that the machining parameters, such as feed-rate, cutting speed and depth of cut, are still programmed off-line. The machining parameters are usually selected before machining accordin to programmer's experience and machining handbooks. To prevent damage and to avoid machining failure the operating conditions are usually set extremely conservative. As a result, many CNC systems are inefficient and run under the operating conditions that are far from optimal . Even if the machining parameters are optimised off-line by an optimisation algorithm they cannot be adjusted during the machining process. In this paper, a neural adaptiv controller is developed and some simulations and experiments with the neural control strategy are carried out. The results demonstrate the ability of the proposed system to effectively regulate peak forces for cutting conditions commonly encountered in end milling operations.
Źródło:
Journal of Machine Engineering; 2010, 10, 2; 25-35
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent prediction of milling strategy using neural networks
Autorzy:
Klancnik, S.
Balic, J.
Cus, F.
Powiązania:
https://bibliotekanauki.pl/articles/971013.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
SOM neural networks
CAD/CAM system
feature extraction
milling strategy
CAD segmentation
STL model
Opis:
This paper presents the prediction of milling tool-path strategy using Artificial Neural Network (ANN), by taking the predefined technological objectives into account. In the presented case, the best possible surface quality of a machined surface was taken as the primary technological aim. This paper shows how feature extraction from a 3D CAD model, and classification using a self-organizing neural network, are done. The experimental results presented in this paper suggest that the prediction of milling strategy using the self-organizing neural network (SOM) is effective.
Źródło:
Control and Cybernetics; 2010, 39, 1; 9-24
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies