- Tytuł:
- Hybrid wavelet transform – MLR and ANN models for river flow prediction: Case study of Brahmaputra river (Pancharatna station)
- Autorzy:
-
Khandekar, Sachin Dadu
Aswar, Dinesh Shrikrishna
Sabale, Pandurang Digamber
Khandekar, Varsha Sachin
Bajad, Mohankumar Namdeorao - Powiązania:
- https://bibliotekanauki.pl/articles/36074310.pdf
- Data publikacji:
- 2024
- Wydawca:
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
- Tematy:
-
wavelet transform
artificial neural network
multiple linear regression
streamflow
Daubechies wavelet
time series - Opis:
- In this research, discrete wavelet transform (DWT) is combined with MLR and ANN to develop WMLR and WANN hybrid models, respectively, for the Brahmaputra river (Pancharatna station) flow forecasting. Daily flow data for the period of 10 year were decomposed (up to fifth level) into detailed and approximation coefficients (using Daubechies wavelets db1, db2, db3, db8 and db10) which were fed as input to MLR and ANN to get the predicted discharge values two days, four days, seven days and 14 days ahead. For all lead times, the WMLR-db10 model was found to be superior as compared to WANN-db1, WANN-db2, WANN-db3, WANN-db8, WMLR-db1, WMLR-db2, WMLR-db3, WMLR-db8 and single MLR and ANN models. During testing period, the values of determination coefficient (R2) and RMSE for WMLR-db10 model for two-, four-, seven- and 14-day lead time were found to be, respectively, 0.996 (751.87 m3·s–1), 0.991 (1,174.80 m3·s–1), 0.984 (1,585.02 m3·s–1), and 0.968 (2,196.46 m3·s–1). Also, it was observed that for lower order wavelets (db1, db2, db3) WANN’s performance was better, and for higher order wavelets (db8, db10) WMLR’s performance was better. Correspondingly, it was observed that all hybrid models’ efficiency increased with increase in the decomposition level.
- Źródło:
-
Scientific Review Engineering and Environmental Sciences; 2024, 33, 1; 69-94
1732-9353 - Pojawia się w:
- Scientific Review Engineering and Environmental Sciences
- Dostawca treści:
- Biblioteka Nauki