- Tytuł:
- Predicting length of fatigue cracks by means of machine learning algorithms in the small-data regime
- Autorzy:
-
Badora, Maciej
Sepe, Marzia
Bielecki, Marcin
Graziano, Antonino
Szolc, Tomasz - Powiązania:
- https://bibliotekanauki.pl/articles/2038115.pdf
- Data publikacji:
- 2021
- Wydawca:
- Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
- Tematy:
-
empirical models
fatigue cracks
predictive maintenance
regression analysis
small data
statistical learning
turbomachinery - Opis:
- In this paper several statistical learning algorithms are used to predict the maximal length of fatigue cracks based on a sample composed of 31 observations. The small-data regime is still a problem for many professionals, especially in the areas where failures occur rarely. The analyzed object is a high-pressure Nozzle of a heavy-duty gas turbine. Operating parameters of the engines are used for the regression analysis. The following algorithms are used in this work: multiple linear and polynomial regression, random forest, kernel-based methods, AdaBoost and extreme gradient boosting and artificial neural networks. A substantial part of the paper provides advice on the effective selection of features. The paper explains how to process the dataset in order to reduce uncertainty; thus, simplifying the analysis of the results. The proposed loss and cost functions are custom and promote solutions accurately predicting the longest cracks. The obtained results confirm that some of the algorithms can accurately predict maximal lengths of the fatigue cracks, even if the sample is small.
- Źródło:
-
Eksploatacja i Niezawodność; 2021, 23, 3; 575-585
1507-2711 - Pojawia się w:
- Eksploatacja i Niezawodność
- Dostawca treści:
- Biblioteka Nauki