- Tytuł:
- Endothelial cells on pet vascular prostheses impregnated with polyester-based copolymers and coated with cell-adhesive protein assemblies
- Autorzy:
-
Chlupac, J.
Filova, E.
Riedel, T.
Brynda, E.
Pamuła, E.
Lisa, V.
Bacakova, L. - Powiązania:
- https://bibliotekanauki.pl/articles/284406.pdf
- Data publikacji:
- 2008
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
- Tematy:
-
vascular prostheses
polyethylene terephtalate
poly(glycolide-L-lactide)
poly(glycolide-L-lactide-(ε)caprolactone)
extracellular matrix
surface modification
collagen
laminin
fibronectin
fibrin
endothelial cells
static cell culture - Opis:
- Arterial bypass surgery with synthetic vascular prostheses achieves poor patency rates compared to autogenous natural materials, and this is a challenge for tissue engineering research concerning small caliber vascular grafts. Modifications of the prosthetic surface followed by endothelial cell seeding may reduce thrombogenicity and intimal hyperplasia. Planar polyethylene terephthalate (PET) vascular prosthetic samples were impregnated with the copolymer poly(glycolide-L-lactide) (PGL) or with the terpolymer poly(glycolide-L-lactide-(e)caprolactone) (PGLCap) in order to lower the permeability of the knitted fabrics and ensure a less adhesive background. Subsequent modification with adhesive protein assemblies composed of collagen type I (Co) in conjunction with laminin (LM), fibronectin (FN) or fibrin (Fb) gel was performed to enhance cell adhesion. Bovine pulmonary artery endothelial cells (EC) of the CPAE line were seeded on to the coatings and subjected to static tissue culture conditions for 7 days. Impregnation of the PET prostheses decreased the initial adhesion and proliferation of the EC. After coating with the protein assemblies, the impregnated PET provided better substrates for cell culture than the protein-coated PET, on which the EC population started decreasing after 4 days of culture. The cells proliferated better on the CoFN, CoFb and CoFbFN coatings than on the Co and CoLM coatings. Impregnation type and adhesive matrix protein deposition may play an important role in successful endothelialization, healing and clinical performance of vascular grafts.
- Źródło:
-
Engineering of Biomaterials; 2008, 11, no. 81-84; 108-111
1429-7248 - Pojawia się w:
- Engineering of Biomaterials
- Dostawca treści:
- Biblioteka Nauki