- Tytuł:
- On Edge H-Irregularity Strengths of Some Graphs
- Autorzy:
-
Naeem, Muhammad
Siddiqui, Muhammad Kamran
Bača, Martin
Semaničová-Feňovčíková, Andrea
Ashraf, Faraha - Powiązania:
- https://bibliotekanauki.pl/articles/32225869.pdf
- Data publikacji:
- 2021-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
prism
antiprism
triangular ladder
diagonal ladder
wheel
gear graph
H-irregular edge labeling
edge H-irregularity strength - Opis:
- For a graph G an edge-covering of G is a family of subgraphs H1, H2, . . ., Ht such that each edge of E(G) belongs to at least one of the subgraphs Hi, i = 1, 2, . . ., t. In this case we say that G admits an (H1, H2, . . ., Ht)-(edge) covering. An H-covering of graph G is an (H1, H2, . . ., Ht)-(edge) covering in which every subgraph Hi is isomorphic to a given graph H. Let G be a graph admitting H-covering. An edge k-labeling α : E(G) → {1, 2, . . ., k} is called an H-irregular edge k-labeling of the graph G if for every two different subgraphs H′ and H′′ isomorphic to H their weights wtα(H′) and wtα(H′″) are distinct. The weight of a subgraph H under an edge k-labeling is the sum of labels of edges belonging to H. The edge H-irregularity strength of a graph G, denoted by ehs(G, H), is the smallest integer k such that G has an H-irregular edge k-labeling. In this paper we determine the exact values of ehs(G, H) for prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs. Moreover the subgraph H is isomorphic to only C4, C3 and K4.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 949-961
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki