Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hybrid learning" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
A hybrid geometallurgical study using coupled Historical Data (HD) and Deep Learning (DL) techniques on a copper ore mine
Autorzy:
Gholami, Alireza
Asgari, Kaveh
Khoshdast, Hamid
Hassanzadeh, Ahmad
Powiązania:
https://bibliotekanauki.pl/articles/2146884.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
hybrid geometallurgy
historical data
deep learning
copper ore
flotation
Opis:
This research work introduces a novel hybrid geometallurgical approach to develop a deep and comprehensive relationship between geological and mining characteristics with metallurgical parameters in a mineral processing plant. This technique involves statistically screening mineralogical and operational parameters using the Historical Data (HD) method. Further, it creates an intelligent bridge between effective parameters and metallurgical responses by the Deep Learning (DL) simulation method. In the HD method, the time and cost of common approaches in geometallurgical studies were minimized through the use of available archived data. Then, the generated DL-based predictive model was enabled to accurately forecast the process behavior in the mineral processing units. The efficiency of the proposed method for a copper ore sample was practically evaluated. For this purpose, six representative samples from different active mining zone were collected and used for flotation tests organized using a randomizing code. The experimental results were then statistically analyzed using HD method to assess the significance of mineralogical and operational parameters, including the proportions of effective minerals, particle size, collector and frother concentration, solid content and pH. Based on the HD analysis, the metallurgical responses including the copper grade and recovery, copper kinetics constant and iron grade in concentrate were modeled with an accuracy of about 90%. Next, the geometallurgical model of the process was developed using the long short-term memory neural network (LSTM) algorithm. The results showed that the studied metallurgical responses could be predicted with more than 95% accuracy. The results of this study showed that the hybrid geometallurgy approach can be used as a promising tool to achieve a reliable relationship between the mining and mineral processing sectors, and sustainable and predictable production.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 3; art. no. 147841
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies