- Tytuł:
- Stability by Krasnoselskiis theorem in totally nonlinear neutral differential equations
- Autorzy:
-
Derrardjia, I.
Ardjouni, A.
Djoudi, A. - Powiązania:
- https://bibliotekanauki.pl/articles/1397510.pdf
- Data publikacji:
- 2013
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
fixed point
stability
nonlinear neutral equation
Krasnoselskii-Burton theorem - Opis:
- In this paper we use fixed point methods to prove asymptotic stability results of the zero solution of a class of totally nonlinear neutral differential equations with functional delay. The study concerns $x^\prime (t)= -a(t)x^3(t) + c(t)x^\prime (t-r(t)) + b(t) x^3 (t-r(t)) $. The equation has proved very challenging in the theory of Liapunov’s direct method. The stability results are obtained by means of Krasnoselskii-Burton’s theorem and they improve on the work of T.A. Burton (see Theorem 4 in [Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem, Nonlinear Studies 9 (2001), 181–190]) in which he takes c=0 in the above equation
- Źródło:
-
Opuscula Mathematica; 2013, 33, 2; 255-272
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki