Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "model systems" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Beta Fuzzy Logic Systems: Approximation Properties in the Siso Case
Autorzy:
Alimi, A. M.
Hassine, R.
Selmi, M.
Powiązania:
https://bibliotekanauki.pl/articles/911157.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
funkcja beta
własność aproksymacyjna
model rozmyty
beta function
universal approximation property
best approximation property
interpolation property
Sugeno fuzzy model
SISO systems
Opis:
In this paper, a Single-Input Single-Output (SISO) Sugeno fuzzy model of the zeroth order with Beta membership functions for input variables is adopted. After the introduction of Beta Fuzzy Logic Systems (BFLS) a constructive theory is developed to establish the fact that they are universal approximators. Based on this theory, an algorithm, which can actually construct a BFLS approximating a given continuous function with an arbitrary degree of accuracy, is described. We then show that BFLSs satisfy more critical properties which are the best approximation property and the interpolation property. We complete the paper with a series of numerical comparisons between the approximation performances of BFLSs and other classes of widely used fuzzy logic systems. These comparisons confirm that BFLSs perform best in all the cases studied.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 857-875
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Beta Fuzzy Logic Systems: Approximation Properties in the mimo Case
Autorzy:
Alimi, A. M.
Hassine, R.
Selmi, M.
Powiązania:
https://bibliotekanauki.pl/articles/908193.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
beta function
universal approximation property
best approximation property
interpolation property
Sugeno fuzzy model
MIMO systems
Opis:
Many researches have been interested in the approximation properties of Fuzzy Logic Systems (FLS), which, like neural networks, can be seen as approximation schemes. Almost all of them tackled the Mamdani fuzzy model, which was shown to have many interesting approximation features. However, only in few cases the Sugeno fuzzy model was considered. In this paper, we are interested in the zero-order Multi-Input-Multi-Output (MIMO) Sugeno fuzzy model with Beta membership functions. This leads to Beta Fuzzy Logic Systems (BFLS). We show that BFLSs are universal approximators. We also prove that they possess the best approximation property and the interpolation characteristic.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 2; 225-238
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Beta neuro-fuzzy systems
Autorzy:
Alimi, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/1931568.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
beta function
kernel based neural networks
Sugeno fuzzy model
neuro-fuzzy systems
universal approximation property
learning algorithms
incremental learning
Opis:
In this paper we present the Beta function and its main properties. A key feature of the Beta function, which is given by the central-limit theorem, is also given. We then introduce a new category of neural networks based on a new kernel: the Beta function. Next, we investigate the use of Beta fuzzy basis functions for the design of fuzzy logic systems. The functional equivalence between Beta-based function neural networks and Beta fuzzy logic systems is then shown with the introduction of Beta neuro-fuzzy systems. By using the SW theorem and expanding the output of the Beta neuro-fuzzy system into a series of Beta fuzzy-based functions, we prove that one can uniformly approximate any real continuous function on a compact set to any arbitrary accuracy. Finally, a learning algorithm of the Beta neuro-fuzzy system is described and illustrated with numerical examples.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 23-41
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies