- Tytuł:
- Free vibration analysis of imperfect functionally graded sandwich plates: analytical and experimental investigation
- Autorzy:
-
Njim, E.K.
Bakhy, S.H.
Al-Waily, M. - Powiązania:
- https://bibliotekanauki.pl/articles/2175750.pdf
- Data publikacji:
- 2021
- Wydawca:
- Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
- Tematy:
-
functionally graded materials
sandwich plate
porous metal
frequency analysis
finite element method (FEM)
funkcjonalne materiały gradientowe
płyta warstwowa
metal porowaty
analiza częstotliwości
metoda elementów skończonych (FEM) - Opis:
- Purpose: This paper develops a new analytical solution to conduct the free vibration analysis of porous functionally graded (FG) sandwich plates based on classical plate theory (CPT). The sandwich plate made of the FGM core consists of one porous metal that had not previously been taken into account in vibration analysis and two homogenous skins. Design/methodology/approach: The analytical formulations were generated based on the classical plate theory (CPT). According to the power law, the material properties of FG plates are expected to vary along the thickness direction of the constituents. Findings: The results show that the porosity parameter and the power gradient parameter significantly influence vibration characteristics. It is found that there is an acceptable error between the analytical and numerical solutions with a maximum discrepancy of 0.576 % at a slenderness ratio (a/h =100), while the maximum error percentage between the analytical and experimental results was found not exceeding 15%. Research limitations/implications: The accuracy of analytical solutions is verified by the adaptive finite elements method (FEM) with commercial ANSYS 2020 R2 software. Practical implications: Free vibration experiments on 3D-printed FGM plates bonded with two thin solid face sheets at the top and bottom surfaces were conducted. Originality/value: The novel sandwich plate consists of one porous polymer core and two homogenous skins which can be widely applied in various fields of aircraft structures, biomedical engineering, and defense technology. This paper presents an analytical and experimental study to investigate the free vibration problem of a functionally graded simply supported rectangular sandwich plate with porosities. The objective of the current work is to examine the effects of some key parameters, such as porous ratio, power-law index, and slenderness ratio, on the natural frequencies and damping characteristics.
- Źródło:
-
Archives of Materials Science and Engineering; 2021, 111, 2; 49--65
1897-2764 - Pojawia się w:
- Archives of Materials Science and Engineering
- Dostawca treści:
- Biblioteka Nauki