- Tytuł:
- Biomechanical comparison of straight DCP and helical plates for fixation of transverse and oblique bone fractures
- Autorzy:
-
Aksakal, B.
Gurger, M.
Say, Y.
Yilmaz, E. - Powiązania:
- https://bibliotekanauki.pl/articles/307129.pdf
- Data publikacji:
- 2014
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
unieruchomienie
biomechanika
kości
Straight DC Plate
helical plate
biomechanics
fixation
bone fractures - Opis:
- Purpose: Biomechanical comparison of straight DCP and helical plates for fixation of transversal and oblique tibial bone fractures were analyzed and compared to each other by axial compression, bending and torsion tests. Method: An in vitro osteosynthesis of transverse (TF) and oblique bone fracture (OF) fixations have been analysed on fresh sheep tibias by using the DCP and helical compression plates (HP). Results: Statistically significant differences were found for both DCP and helical plate fixations under axial compression, bending and torsional loads. The strength of fixation systems were in favor of DC plating with exception of the TF-HP fixation group under compression loads and torsional moments. The transvers fracture (TF) stability was found to be higher than that found in oblique fracture (OF) fixed by helical plates (HP). However, under torsional testing, compared to conventional plating, the helical plate fixations provided a higher torsional resistance and strength. The maximum stiffness at axial compression loading and maximum torsional strength was achieved at torsional testing for the TF-HP fixations. Conclusion: From in vitro biomechanical analysis, fracture type and plate fixation system groups showed different responses under different loadings. Consequently, current biomechanical analyses may encourage the usage of helical HP fixations in near future during clinical practice for transverse bone fractures.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2014, 16, 4; 67-74
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki