Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "time-image" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Detection of driver sleepiness and warning the driver in real-time using image processing and machine learning techniques
Autorzy:
Umut, I.
Aki, O.
Uçar, E.
Öztürk, L.
Powiązania:
https://bibliotekanauki.pl/articles/102474.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
driver
sleepiness
real time
image processing
machine learning
Opis:
The aim of this study is to design and implement a system that detect driver sleepiness and warn driver in real-time using image processing and machine learning techniques.Viola-Jones detector was used for segmenting face and eye images from the camera-acquired driver video. Left and right eye images were combined into a single image. Thus, an image was obtained in minimum dimensions containing both eyes. Features of these images were extracted by using Gabor filters. These features were used to classifying images for open and closed eyes. Five machine learning algorithms were evaluated with four volunteer’s eye image data set obtained from driving simulator. Nearest neighbor IBk algorithm has highest accuracy by 94.76% while J48 decision tree algorithm has fastest classification speed with 91.98% accuracy. J48 decision tree algorithm was recommended for real time running. PERCLOS the ratio of number of closed eyes in one minute period and CLOSDUR the duration of closed eyes were calculated. The driver is warned with the first level alarm when the PERCLOS value is 0.15 or above, and with second level alarm when it is 0.3 or above. In addition, when it is detected that the eyes remain closed for two seconds, the driver is also warned by the second level alarm regardless of the PERCLOS value. Designed and developed real-time application can able to detect driver sleepiness with 24 FPS image processing speed and 90% real time classification accuracy. Driver sleepiness were able to detect and driver was warned successfully in real time when sleepiness level of driver is achieved the defined threshold values.
Źródło:
Advances in Science and Technology. Research Journal; 2017, 11, 2; 95-102
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies