Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dual graph" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Extension of several sufficient conditions for Hamiltonian graphs
Autorzy:
Ainouche, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/744192.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hamiltonian graph
dual closure
neighborhood closure
Opis:
Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖{u})|+d(u) ≥ n-1. Using the concept of dual closure, we prove that
1. G is hamiltonian if and only if its 0-dual closure is either complete or the cycle C₇
2. G is nonhamiltonian if and only if its 0-dual closure is either the graph $(K_r ∪ Kₛ ∪ Kₜ) ∨ K₂$, 1 ≤ r ≤ s ≤ t or the graph $((n+1)/2)K₁ ∨ K_{(n-1)/2}$.
It follows that it takes a polynomial time to check the hamiltonicity or the nonhamiltonicity of a graph satisfying the above condition. From this main result we derive a large number of extensions of previous sufficient conditions for hamiltonian graphs. All these results are sharp.
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 1; 23-39
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Variations on a sufficient condition for Hamiltonian graphs
Autorzy:
Ainouche, Ahmed
Lapiquonne, Serge
Powiązania:
https://bibliotekanauki.pl/articles/743758.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cycles
partially square graph
degree sum
independent sets
neighborhood unions and intersections
dual closure
Opis:
Given a 2-connected graph G on n vertices, let G* be its partially square graph, obtained by adding edges uv whenever the vertices u,v have a common neighbor x satisfying the condition $N_G(x) ⊆ N_G[u] ∪ N_G[v]$, where $N_G[x] = N_G(x) ∪ {x}$. In particular, this condition is satisfied if x does not center a claw (an induced $K_{1,3}$). Clearly G ⊆ G* ⊆ G², where G² is the square of G. For any independent triple X = {x,y,z} we define
σ̅(X) = d(x) + d(y) + d(z) - |N(x) ∩ N(y) ∩ N(z)|.
Flandrin et al. proved that a 2-connected graph G is hamiltonian if [σ̅]₃(X) ≥ n holds for any independent triple X in G. Replacing X in G by X in the larger graph G*, Wu et al. improved recently this result. In this paper we characterize the nonhamiltonian 2-connected graphs G satisfying the condition [σ̅]₃(X) ≥ n-1 where X is independent in G*. Using the concept of dual closure we (i) give a short proof of the above results and (ii) we show that each graph G satisfying this condition is hamiltonian if and only if its dual closure does not belong to two well defined exceptional classes of graphs. This implies that it takes a polynomial time to check the nonhamiltonicity or the hamiltonicity of such G.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 2; 229-240
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies