Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "short-term forecasting" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
An overview of deep learning techniques for short-term electricity load forecasting
Autorzy:
Adewuyi, Saheed
Aina, Segun
Uzunuigbe, Moses
Lawal, Aderonke
Oluwaranti, Adeniran
Powiązania:
https://bibliotekanauki.pl/articles/117932.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
Short-term Load Forecasting
Deep Learning Architectures
RNN
LSTM
CNN
SAE
prognozowanie obciążenia krótkoterminowego
architektura głębokiego uczenia
Opis:
This paper presents an overview of some Deep Learning (DL) techniques applicable to forecasting electricity consumptions, especially in the short-term horizon. The paper introduced key parts of four DL architectures including the RNN, LSTM, CNN and SAE, which are recently adopted in implementing Short-term (electricity) Load Forecasting problems. It further presented a model approach for solving such problems. The eventual implication of the study is to present an insightful direction about concepts of the DL methods for forecasting electricity loads in the short-term period, especially to a potential researcher in quest of solving similar problems.
Źródło:
Applied Computer Science; 2019, 15, 4; 75-92
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies