Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Differential transformation method" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Differential Transform Method for the Kinetic Analysis of Thermal Inactivation of Enzyme as Applied in Biotechnology
Autorzy:
Adeleye, O. A.
Sobamowo, M. G.
Akinnukawe, B. I.
Powiązania:
https://bibliotekanauki.pl/articles/1031487.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Analytical solution
Differential transformation method
Enzyme
Kinetic analysis
Thermal inactivation
Opis:
In this work, approximate analytical solution is developed using differential transformation method for finding the molar concentration of the native and denatured enzyme in terms of second-order rate constant. Also, the obtained solutions are used to study the kinetics of thermal inactivation of enzyme as applied in biotechnology. The analytical solution was validated with numerical solution using fourth- order Runge-Kutta. Good agreement was established between the numerical and approximated analytical solutions.
Źródło:
World Scientific News; 2020, 142; 135-149
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Analysis of Jump and Bifurcation Phenomena in a Forced Vibration of Geometrical Nonlinear Cantilever Beam: Application of Differential Transformation Method
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Oyelade, A. O.
Sadiq, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/1031911.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Bifurcation Phenomenon
Differential transformation method
Jump phenomenon
Nonlinear vibration
Phase plane
Opis:
One of the classical features exhibited in nonlinear dynamics of engineering systems is the jump phenomenon, which is the discontinuous change in the steady state response of a system as a parameter is slowly varied. Such phenomenon is characterized by large amplitude dynamic responses of systems to small amplitude disturbances. It is established that this phenomenon cannot be described by the standard asymptotic and perturbation methods because they are limited to the study of small amplitude responses to small disturbances. Therefore, this paper presents the application of differential transformation method-Padé approximant to the solution of jump and bifurcation phenomena for a geometrical nonlinear cantilever beam subjected to a harmonic excitation. The accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through a comparison of the results of the analytical solution with the corresponding results of the numerical solution obtained by fourth-order Runge-Kutta method and also with the results in a past study using harmonic balancing method. With the aid of the differential transformation method-Padé approximant, the effects of the nonlinear parameters in the model equation on the dynamic response of the beam are investigated. Also, the sensitivity of the beam to the external excitation amplitude is analyzed. In the distributed forced vibration, the jump phenomenon appeared in the response amplitude by variation of the excitation frequency while in the resonance frequency, the beat phenomenon with harmonic motion is seen for low level of excitation amplitude. At a certain frequency, the jump and bifurcation phenomena are seen in the curves of responses versus excitation amplitude. Additionally, the plots of the phase plane and time history of the system response are shown. It is established that the differential transformation method is a very useful mathematical tool for dealing with the nonlinear problems.
Źródło:
World Scientific News; 2020, 140; 26-58
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Efficiency of Differential Transformation Method to the Solutions of Large Amplitude Nonlinear Oscillation Systems
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Alozie, S. I.
Salawu, S. A.
Salami, M. O.
Powiązania:
https://bibliotekanauki.pl/articles/1031949.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Analytical solution
Differential transformation method
Large amplitude
Oscillation system
Strong nonlinearity
Opis:
In this work, the efficiency of differential transformation method to the solutions of large amplitude nonlinear oscillatory systems is further established. Two cases of oscillation systems, nonlinear plane pendulum and pendulum in a rotating plane are considered. Without any linearization, discretization or series expansion of the sine and cosine of the angular displacement in the nonlinear models of the systems, the differential transformation method with Padé approximant is used to provide analytical solutions to the nonlinear problems. Also, the increased predictive power and the high level of accuracy of the differential transformation method over the previous methods are presented. The extreme accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through comparison of the results of the solution with the corresponding numerical solutions obtained by fourth-fifth-order Runge-Kutta method. Also, with the aid of the analytical solutions, parametric studies were carried to study the impacts of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The method avoids any numerical complexity and it is very simple, suitable and useful as a mathematical tool for dealing the nonlinear problems.
Źródło:
World Scientific News; 2020, 139, 1; 1-60
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies