Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Maszyna Wektorów Nośnych" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
Ocena zdolności ekstremalnych maszyn uczących (ELM) do przewidywania poziomu wód gruntowych
Autorzy:
Yadav, B.
Ch, S.
Mathur, S.
Adamowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/293096.pdf
Data publikacji:
2017
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
extreme learning machine (ELM)
forecasting
groundwater level
support vector machine (SVM)
water resource management
maszyna uczenia ekstremalnego (ELM)
maszyna wektorów nośnych SVM
poziom wód gruntowych
prognozowanie
zarządzanie zasobami wodnymi
Opis:
Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models) in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM) and support vector machine (SVM) to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level) was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.
Na całym świecie fluktuacje poziomów wód gruntowych stanowią ważny temat badań hydrologicznych. Rosnące potrzeby wodne, błędne praktyki irygacyjne, niewłaściwa gospodarka glebowa i niekontrolowana eksploatacja poziomów wodonośnych są powodami, dla których poziom wód gruntowych podlega fluktuacjom. Dla skutecznego zarządzania zasobami wód gruntowych istotne jest dysponowanie dokładnymi zapiskami i zdolność prognozowania poziomu tych wód. Rozwój technik komputerowych (modele wykorzystujące dane) w dziedzinie hydrologii ma istotny potencjał z powodu niepewnego i złożonego charakteru systemów wód gruntowych. W prezentowanych badaniach wykorzystano dwie techniki komputerowe: maszynę uczenia ekstremalnego (ELM) i maszynę wektorów nośnych (SVM – ang. support vector machine) do przewidywania poziomów wód gruntowych w dwóch studzienkach obserwacyjnych w Kanadzie. Do porównawczych badań modeli wykorzystano zestaw danych miesięcznych z ośmiu lat (2006–2014), składający się z danych hydrologicznych i meteorologicznych (opady, temperatura, ewapotranspiracja, poziom wody). Wymienione zmienne zastosowano w rozmaitych kombinacjach do jedno- i wieloparametrycznej analizy modeli. Wyniki dowodzą, że model ELM ma lepsze zdolności przewidywania miesięcznych poziomów wód gruntowych w porównaniu z modelem SVM.
Źródło:
Journal of Water and Land Development; 2017, 32; 103-112
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing
Wielozadaniowa optymalizacja bioremediacji wód gruntowych in situ z zastosowaniem hybrydowej techniki metaheurystycznej opartej na zróżnicowanej ewolucji, algorytmach genetycznych i symulowanym wyżarzaniu
Autorzy:
Kumar, D.
Ch, S.
Mathur, S.
Adamowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/292714.pdf
Data publikacji:
2015
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
differential evolution
fuzzy logic
genetic algorithm
groundwater
hybrid algorithm
in situ bioremediation
simulated annealing
support vector machine (SVM)
bioremediacja in situ
algorytm hybrydowy
algorytm genetyczny
logika rozmyta
maszyna wektorów nośnych SVM
wyżarzanie symulowane
wody gruntowe
zróżnicowana ewolucja
Opis:
Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM) was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE), Non Dominated Sorting Genetic Algorithm (NSGA II) and Simulated Annealing (SA). It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.
Zanieczyszczenie wód gruntowych wyciekami benzyny jest jedną z kilku przyczyn wpływających na środowisko wód podziemnych. W ostatnich latach bioremediacja in situ przyciągała uwagę badaczy z powodu jej zdolności do usuwania zanieczyszczeń w ich siedlisku i niskich kosztów procesu. Przedstawiona praca proponuje użycie nowego algorytmu hybrydowego do optymalizacji wielozadaniowej funkcji, która obejmuje koszty remediacji jako pierwsze zadanie i resztową zawartość zanieczyszczeń po zakończeniu procesu jako drugie z zadań. Algorytm hybrydowy powstał z połączenia metod różnicowej ewolucji, algorytmu genetycznego i symulowanego wyżarzania. Maszyna wektorów nośnych (SVM) została użyta jako wirtualny symulator biologicznej degradacji zanieczyszczeń w wodach gruntowych. Wyniki uzyskane z algorytmy hybrydowego porównano z wynikami zróżnicowanej ewolucji (DE), algorytmu genetycznego (NSGA II) i symulowanego wyżarzania (SA). Stwierdzono, że proponowany algorytm był w stanie zapewnić najlepsze rozwiązanie. Użyto metody z zakresu logiki rozmytej dla znalezienia najlepszego rozwiązania kompromisowego i na końcu przedstawiono dla tego rozwiązania strategię szybkości pompowania celem remediacji wód gruntowych. Wyniki pokazały, że koszty ponoszone na rozwiązanie kompromisowe są pośrednie między najwyższymi i najniższymi kosztami innych rozwiązań.
Źródło:
Journal of Water and Land Development; 2015, 27; 29-40
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies