- Tytuł:
- Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde
- Autorzy:
-
Ababneh, Taher S.
El-Khateeb, Mohammad
Tanash, Aissar K.
AL-Shboul, Tareq M.A.
Shammout, Mohammad Jamal A.
Jazzazi, Taghreed M.A.
Alomari, Mohammad
Daoud, Safa
Talib, Wamidh H. - Powiązania:
- https://bibliotekanauki.pl/articles/1849324.pdf
- Data publikacji:
- 2021
- Wydawca:
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
- Tematy:
-
tetradentate schiff base
symmetrical metal complexes
DFT calculation
spectroscopy
anticancerous
antiproliferative - Opis:
- Four new symmetrical Schiff bases derived from 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde have been synthesized and characterized by elemental analysis and different spectroscopic techniques. The reaction of 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl with two equivalents of 5-tert-butyl-, 3,5-dinitro-, 3,5-dibromo- and 3-tert-butyl-salicylaldehyde yielded 2,2’-bis(5-tert-butyl-salicylideneamino)-4,4’-dimethyl-1,1’-biphenyl (A1) as well as the 3,5-dinitro- (A2), 3,5-dibromo- (A3) and 3-tert-butyl- (A4) substituted derivatives. The tetradentate ligands were then reacted with copper-, manganese- and zinc-acetate producing the tetra-coordinate metal complexes which were characterized by FTIR, UV-Visible spectroscopy, magnetic susceptibility and elemental analysis. Zinc complexes were characterized by 1H-NMR spectroscopy. Density functional theory (DFT) calculations at the B3LYP/6-31G(d) level of theory were carried out to fully optimize and examine the molecular geometries of complexes. Subsequently, IR vibrational and UV-Vis absorption spectra were computed and correlated with the observed values and the results are in good agreement with the experimental data. The anticancerous and antiproliferative activity of the A3 ligand and its metal complexes were determined.
- Źródło:
-
Polish Journal of Chemical Technology; 2021, 23, 1; 7-15
1509-8117
1899-4741 - Pojawia się w:
- Polish Journal of Chemical Technology
- Dostawca treści:
- Biblioteka Nauki