Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hui, S." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Discrete Fourier transform based pattern classifiers
Autorzy:
Hui, S.
Żak, S. H.
Powiązania:
https://bibliotekanauki.pl/articles/202074.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pattern classification
multidimensional discrete Fourier transform
DFT
Fourier coefficients
Opis:
A technique for pattern classification using the Fourier transform combined with the nearest neighbor classifier is proposed. The multidimensional fast Fourier transform (FFT) is applied to the patterns in the data base. Then the magnitudes of the Fourier coefficients are sorted in descending order and the first P coefficients with largest magnitudes are selected, where P is a design parameter. These coefficients are then used in further processing rather than the original patterns. When a noisy pattern is presented for classification, the pattern’s P Fourier coefficients with largest magnitude are extracted. The coefficients are arranged in a vector in the descending order of their magnitudes. The obtained vector is referred to as the signature vector of the corresponding pattern. Then the distance between the signature vector of the pattern to be classified and the signature vectors of the patterns in the data base are computed and the pattern to be classified is matched with a pattern in the data base whose signature vector is closest to the signature vector of the pattern being classified.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2014, 62, 1; 15-22
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Discrete Fourier transform and permutations
Autorzy:
Hui, S.
Żak, S. H.
Powiązania:
https://bibliotekanauki.pl/articles/202022.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
discrete Fourier transform
DFT
DFT invariants
Fourier coefficients
permutations
DFT coefficient magnitudes
circulant matrix
pattern recognition
Opis:
It is well known that the magnitudes of the coefficients of the discrete Fourier transform (DFT) are invariant under certain operations on the input data. In this paper, the effects of rearranging the elements of an input data on its DFT are studied. In the one-dimensional case, the effects of permuting the elements of a finite sequence of length N on its Discrete Fourier transform (DFT) coefficients are investigated. The permutations that leave the unordered collection of Fourier coefficients and their magnitudes invariant are completely characterized. Conditions under which two different permutations give the same DFT coefficient magnitudes are given. The characterizations are based on the automorphism group of the additive group ZN of integers modulo N and the group of translations of ZN. As an application of the results presented, a generalization of the theorem characterizing all permutations that commute with the discrete Fourier transform is given. Numerical examples illustrate the obtained results. Possible generalizations and open problems are discussed. In higher dimensions, results on the effects of certain geometric transformations of an input data array on its DFT are given and illustrated with an example.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 6; 995-1005
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies