Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gałaczyński, T." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Łączenie doczołowe cienkich blach ze stopów tytanu metodą zgrzewania tarciowego z przemieszaniem (FSW)
Butt welding of thin titanium sheets using friction stir welding (FSW) technology
Autorzy:
Luty, G.
Gałaczyński, T.
Śliwa, R. E.
Myśliwiec, P.
Powiązania:
https://bibliotekanauki.pl/articles/211957.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Obróbki Plastycznej
Tematy:
zgrzewanie tarciowe z przemieszaniem
FSW
łączenie blach
blacha tytanowa
ceramika narzędziowa
węglik spiekany
friction stir welding
titanium sheet
sheets joining
tool ceramic
sintered carbide
Opis:
Publikacja dotyczy analizy charakterystyki dynamicznej procesu FSW opartego na efekcie uplastycznienia łączonych elementów ze stopów tytanu i efektu ich wymie-szania w strefie zgrzewania ze szczególnym uwzględnieniem specyfiki łączenia cienkich blach. Wykazano efekt wpływu parametrów procesu takich, jak m.in.: obroty i posuw narzędzia (prędkość zgrzewania), geometria i materiał narzędzia, temperatura. Uplastycznienie w strefie połączenia wymaga odpowiedniego poziomu naprężeń ścinających dla uruchomienia mechanizmu plastycznego płynięcia. Wielkością, która reprezentuje odpowiedź materiału na obciążenia zewnętrzne powodujące jego uplastycznienie, jest wartość sił osiowej i promieniowej występujących podczas zgrzewania. Temperatura procesu FSW blach tytanowych oscyluje w granicach 1000°C. Istnieje potrzeba stosowania zaawansowanych materiałów narzędziowych (np. specjalnej ceramiki narzędziowej) i stosowanie specjalnych układów chłodzących, zarówno narzędzie, jak i przyrząd mocujący. W pracy przedstawiono wyniki zgrzewania cienkich blach ze stopu tytanu GRADE 3 o grubości 0,5 mm w połączeniach doczołowych, za pomocą narzędzi wykonanych z węglika spiekanego oraz ze specjalnej ceramiki narzędziowej, o wymiarach dostosowanych do grubości blachy. Podczas zgrzewania rejestrowano wartości siły osiowej i promieniowej. Jakość złącza oceniano na podstawie badań właściwości mechanicznych złącza oraz analizy mikrostruktury. Wykazano, że odpowiednio dobrane parametry technologiczne i geometryczne procesu FSW wraz z odpowiednimi narzędziami, skutkują otrzymaniem połączeń wysokiej jakości i dużej powtarzalności. Najlepsze rezultaty otrzymano przy zastosowaniu narzędzia ceramicznego, prędkości obrotowej narzędzi 4000 obr/min i prędkości posuwu 100 mm/min. Warunki te zapewniają otrzymanie zgrzeiny o efektywności złącza na poziomie 84% wytrzymałości materiału rodzimego.
The publication concerns the analysis of dynamic characteristics of the FSW process based on the effect of plasticization of joined elements from titanium alloys and the effect of their mixing in the welding zone, with particular emphasis on the specificity of joining thin sheets. The effect of the parameters such as tool rotational and travel speed (welding speed), geometry and material of the tool, temperature, was shown. Plasticization in the welding zone requires an appropriate level of shear stress to activate the flow plasticity mechanism. The value that represents the material's response to external loads causing its plasticization is the value of axial and radial forces during welding. The temperature of the FSW process for titanium sheets oscillates around 1000°C. There is a need to use advanced tool materials (e.g. special tool ceramics) and the use of special cooling systems for tool and the fixtures. The paper presents the results of welding thin GRADE 3 titanium sheets with a thickness of 0.5 mm in butt joints, using tools made of sintered carbide and a special tool ceramic, with dimensions adapted to the thickness of the sheet. During the welding, the values of axial and radial force were recorded. The quality of the joint was evaluated based on the mechanical properties of the joint and microstructure analysis. It was shown that the appropriately selected technological and geometric parameters of the FSW process together with the appropriate tools resulted in obtaining high quality connections and high repeatability. The best results were obtained using a ceramic tool, a rotational speed of tool at 4000 rpm and a travel speed of 100 mm/min. These conditions ensure that the weld has joint efficiency on 84% level com-pared to parent material.
Źródło:
Obróbka Plastyczna Metali; 2018, 29, 3; 277-298
0867-2628
Pojawia się w:
Obróbka Plastyczna Metali
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of tool shape on temperature field in friction stir spot welding
Wpływ kształtu narzędzia na pole temperatury w procesie punktowego zgrzewania tarciowego z mieszaniem
Autorzy:
Lacki, P.
Kucharczyk, Z.
Śliwa, R. E.
Gałaczyński, T.
Powiązania:
https://bibliotekanauki.pl/articles/351084.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir spot welding (FSSW)
metal welding
FEM
Al 6061-T6
zgrzewanie tarciowe z przemieszaniem (FSW)
spawanie metali
Opis:
Friction stir welding (FSW) is one of the youngest methods of metal welding. Metals and its alloys are joined in a solid state at temperature lower than melting points of the joined materials. The method is constantly developed and friction stir spot welding (FSSW) is one of its varieties. In the friction stir spot welding process a specially designed tool is brought into rotation and plunged, straight down, in the joined materials. Heat is generated as a result of friction between the tool and materials, and plastic deformation of the joined materials. Softening (plastic zone) of the joined materials occurs. Simultaneously the materials are stirred. After removal of the tool, cooling down the stirred materials create a solid state joint. Numerical simulation of the process was carried out with the ADINA System based on the finite element method (FEM). The problem was considered as an axisymmetric one. A thermal and plastic material model was assumed for Al 6061-T6. Frictional heat was generated on the contact surfaces between the tool and the joined elements. The model of Coulomb friction, in which the friction coefficient depends on the temperature, was used. An influence of the tool geometry on heat generation in the welded materials was analysed. The calculations were carried out for different radiuses of the tool stem and for different angles of the abutment. Temperature distributions in the welded materials as a function of the process duration assuming a constant value of rotational tool speed and the speed of tool plunge were determined. Additionally, the effect of the stem radius and its height on the maximum temperature was analysed. The influence of tool geometry parameters on the temperature field and the temperature gradient in the welded materials was shown. It is important regarding the final result of FSSW.
Zgrzewanie tarciowe z przemieszaniem (FSW) jest jedna ze stosunkowo niedawno opracowanych metod łączenia metali. Należy do grupy metod łączenia metali i ich stopów w stanie stałym, w temperaturach niższych od temperatury topnienia łączonego materiału. Metoda jest stale rozwijana, a jedną z jej odmian jest punktowe zgrzewanie tarciowe z przemieszaniem (FSSW). W procesie punktowego zgrzewania tarciowego z przemieszaniem specjalnie zaprojektowane narzędzie wprowadzane jest w ruch obrotowy i wgłebiane, pionowo w dół, w obszar łączenia dwóch elementów. Wskutek tarcia narzędzia o materiał oraz plastycznego odkształcania materiału, generowane jest ciepło. Następuje zmiękczenie materiału łączonych elementów. Zmiękczony materiał (uplastyczniony) jest stale mieszany. Po wyprowadzeniu narzędzia, przemieszany materiał stygnąc tworzy między spajanymi elementami złącze w stanie stałym. Symulację numeryczną procesu za pomocą metody elementów skończonych wykonano z wykorzystaniem programu ADINA. Problem rozpatrywano jako zagadnienie osiowosymetryczne. Przyjęto termoplastyczny model materiału - Al 6061-T6. Ciepło tarcia generowane jest na powierzchni kontaktu narzędzia z łączonymi elementami. Zastosowano model tarcia Coulomba, w którym współczynnik tarcia zależy od temperatury. W pracy analizowano wpływ geometrii narzędzia na generowanie ciepła w zgrzewanym materiale. Obliczenia przeprowadzono dla różnych wartości promienia trzpienia narzędzia oraz kąta wieńca opory. Wyznaczono rozkłady temperatury w zgrzewanym materiale w funkcji czasu trwania procesu, przyjmując stałą wartość prędkości obrotowej narzędzia i prędkości jego wgłębiania. Analizowano także zależność maksymalnej temperatury od promienia i wysokości trzpienia. Wykazano wpływ parametrów geometrycznych narzędzia na pole temperatury i gradientu temperatury w zgrzewanym materiale, co jest ważne dla finalnego efektu połączenia materiałów technologią FSSW.
Źródło:
Archives of Metallurgy and Materials; 2013, 58, 2; 595-599
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies