Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chondrite" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Nowy chondryt zwyczajny H5, S2, W1: Northwest Africa 11778
A new ordinary chondrite H5, S2, W1: Northwest Africa 11778
Autorzy:
Przylibski, Tadeusz
Łuszczek, Katarzyna
Kryza, Ryszard
Blutstein, Konrad
Powiązania:
https://bibliotekanauki.pl/articles/1033153.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Meteorytowe
Tematy:
H5 chondrite
NWA chondrite
bulk chemistry
chemistry of minerals
meteorite
ordinary chondrite
Opis:
Based on petrological, mineralogical and geochemical analyses, the authors classified the new meteorite Northwest Africa 11778 as an ordinary chondrite H5, S2, W1. It is a single stone with mass 767.5 g and with well-preserved black fusion crust with brown shade (Fig. 1). This meteorite was found in Sahara Desert and it was purchased by Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology from Moroccan dealer in Zagora in June 2013. The most characteristic component of analyzed chondrite are different types of chondrules (barred olivine – BO, porphyritic olivine – PO, granular olivine – GO, radial pyroxene – RP, porphyritic olivine-pyroxene – POP, cryptocrystalline – C) (Fig. 2), which constitute 75% of meteorite. Their size is in range 0.2–1.2 mm, with average chondrule size ca. 0.6 mm. Bigger porphyritic olivine chondrules with diameter up to 1.5 mm rarely occur. The chemical composition of olivine crystals (Fa 18 mol%) and pyroxene crystals (Fs 16.2 mol%) proves this meteorite to be an H chondrite (Tab. 1, Fig. 4–5, App. 1–2). The averaged concentration of major elements in the classified meteorite is comparable to their mean content in H chondrites (Fig. 8). The meteorite NWA 11778 contains only slightly less Mg and Al than average H chondrites (Tab. 2). Among the other analysed elements, values distinctly out of the range of typical concentrations for H chondrites are characteristic of Hg and Eu (lower concentration in the NWA 11778 meteorite) (Tab. 3, Fig. 8–9). The presence of chondrules with predominantly sharp boundaries (Fig. 2), secondary feldspar crystals with sizes of up to 50 mm, chiefly crystalline mesostasis and only secondarily – devitrified glass in chondrules, and transparent crystalline matrix (with olivine crystals up to 0.26 mm and pyroxenes up to 0.30 mm in size), as well as common occurrence of untwinned rhombic pyroxenes prove the classified meteorite to belong to petrological type 5. It is additionally confirmed by mean Ni content in troilite below 0.5 wt% (0.04 wt%) (Tab. 1, App. 4) and carbon content below 0.2 wt% (0.07 wt%) (Tab. 2). Undulatory extinction in some olivine and pyroxene crystals and the presence of irregular fractures in the NWA 11778 chondrite enables specifying its shock level as S2. The weathering grade adopted for the NWA 11778 chondrite was W1, as visible weathering changes cover only the marginal parts of FeNi alloy grains. As a result of the weathering of 10–20% of FeNi grains, iron oxides and hydroxides are formed. These secondary weathering Fe3+ compounds also fill cracks, forming veins running between chondrules within matrix (Fig. 3).
Źródło:
Acta Societatis Metheoriticae Polonorum; 2020, 11; 77-97
2080-5497
Pojawia się w:
Acta Societatis Metheoriticae Polonorum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowy chondryt zwyczajny L6, S1, W1: Northwest Africa 11779
A new ordinary chondrite L6, S1, W1: Northwest Africa 11779
Autorzy:
Przylibski, Tadeusz A.
Łuszczek, Katarzyna
Kryza, Ryszard
Powiązania:
https://bibliotekanauki.pl/articles/1033133.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Meteorytowe
Tematy:
L6 chondrite
NWA chondrite
bulk chemistry
chemistry of minerals
meteorite
ordinary chondrite
Opis:
Based on petrological, mineralogical and geochemical research authors classified new meteorite Northwest Africa 11779 as the ordinary chondrite L6, S1, W1. Chemical composition of olivine crystals (Fa 24.9 mol.%) and of pyroxene crystals (Fs 19.4 mol.%) proved that this meteorite belongs to L chondrites. However, bulk chemical composition of NWA 11779 is not typical for L chondrites. Nevertheless, all analyzed elements (except Mo, Sn and Nb) are in abundances reported for L chondrites, some of elements have concentration closed to average abundances for L chondrites. The content of chosen, characteristic lithophile, siderophile and chalkophile elements in NWA 11779 chondrite is in most cases in accord with its typical abundance in L chondrites. Presence of poorly defined chondrules, secondary feldspar crystals larger than 50 µm in size, absence of glass within chondrules, coarse recrystallized matrix (with olivine crystals of 0.5 mm in diameter and pyroxene crystals of 0.3 mm in diameter) as well as carbon content below 0.2 wt% proved that studied meteorite belongs to the petrologic type 6. The only difference from characteristic features of petrologic type 6 in case of NWA 11779 chondrite is presence of ca. 10% of monoclinic Ca-poor pyroxenes. Undulatory extinction by olivine and absence of other shock features in this chondrite allow to determine the shock level as S1. Weathering grade of NWA 11779 was identified as W1 based on weathering of only FeNi alloy grains. The outer part of metallic grains as well as contact zones of FeNi and FeS are changed due to weathering. Between 10 and 20% of FeNi alloy grains are oxidized to iron oxides and hydroxides. These secondary products of weathering replace outer zone of FeNi grains and fill the small cracks, creating a few thin veins.
Źródło:
Acta Societatis Metheoriticae Polonorum; 2019, 10; 121-139
2080-5497
Pojawia się w:
Acta Societatis Metheoriticae Polonorum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Skład chondrytów zwyczajnych a potencjalne surowce pasa planetoid
Composition of Ordinary Chondrites and Potential Natural Resources of Asteroid Belt
Autorzy:
Łuszczek, Katarzyna
Przylibski, Tadeusz A.
Powiązania:
https://bibliotekanauki.pl/articles/1032729.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Meteorytowe
Tematy:
Fe-Ni alloy
asteroid
asteroid belt
chondrite
extraterrestrial resource
meteorite
meteorites
natural resource
ordinary chondrite
troilite
Opis:
In this article the authors present a simple method of determining the content of selected metal raw materials (Fe, Ni, Co) on the parent bodies of ordinary chondrites. Thanks to the use of planimeter for measuring, under microscope, polished slices of meteorites, it is possible to estimate quite accurately the proportion of these metals in the parent bodies of meteorites, i.e. on asteroids. When it comes to analysing a large number of polished slices, these results will be most likely comparable to much more expensive results of chemical tests conducted on meteorites. Based on the analysis of 16 thin polished sections and polished slices of 11 ordinary chondrites, the authors found out that the highest content of Fe, Ni and Co ore minerals, reaching 10,06% of the total volume, can be found in ordinary chondrites from group H. For ordinary chondrites from groups L and LL, it makes 3,86% and 3,93% of the volume respectively. Employing the results of chemical analyses available in literature sources, the authors also estimated the size of Fe, Ni and Co resources for several selected asteroids. These bodies contain higher concentrations of iron, nickel and cobalt than terrestrial deposits (those found in the earth’s crust). The total content of Fe on parent bodies of even the most deficient in metals group LL of ordinary chondrites is about twice as high as that in the earth’s crust. Cobalt occurs on parent asteroids of ordinary chondrites in concentrations 15–24 times as high as those in the earth’s crust, and the concentrations of Ni are 100–180 times as high as those in the earth’s crust. The contents of these metals on parent asteroids of ordinary chondrites are also several times as high as those in currently extracted deposits in the earth’s crust. Taking into account the mean annual terrestrial production of these metals, the authors have estimated that a parent asteroid of ordinary chondrites with the size between 433 Eros and 6 Hebe could satisfy our need for Fe, Ni and Co for the nearest several million to dozens of billion years. Considering the fact that asteroid belt contains plenty of such objects, and as many asteroids built chiefly of Fe-Ni alloy, one should regard this section of the Solar System as a practically inexhaustible source of metal raw materials. The prospect of their exploitation is probably much nearer than we can currently imagine.
Źródło:
Acta Societatis Metheoriticae Polonorum; 2011, 2; 92-111
2080-5497
Pojawia się w:
Acta Societatis Metheoriticae Polonorum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Planimetrowanie ziaren FeNi jako metoda ustalenia stopnia wietrzenia W0–W4 chondrytów zwyczajnych
FeNi grains planimetry as a method to establish weathering grade W0–W4 of ordinary chondrites
Autorzy:
Przylibski, Tadeusz A.
Łuszczek, Katarzyna
Blutstein, Konrad
Powiązania:
https://bibliotekanauki.pl/articles/1033132.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Meteorytowe
Tematy:
FeNi alloy weathering
Wlotzka scale
meteorite
ordinary chondrite
ordinary chondrite weathering
ordinary chondrites weathering scale
weathering grade
Opis:
Wlotzka scale (Wlotzka 1993) is commonly used to determine the weathering grade of ordinary chondrites. The scale is descriptive and based mostly on a subjective assessment of researcher. In this paper authors define a new, quantitative method to establish the W0–W4 weathering grade, which is based on planimetry of FeNi grains. Results of planimetry are compared with average content of FeNi metal in unweathered chondrites from the same group. Weathering grade estimated by this method are consistent with, or slightly different from the official one determined in classification, what proves the efficacy of the proposed method. Moreover, the method was applied to define weathering grade of meteoritic samples not classified so far: Pułtusk (W2), Thuathe (W2), Gao-Guenie (W2/W3), NWA 5205 (W3), NWA 4505 (W3), NWA 5296 (W2).
Źródło:
Acta Societatis Metheoriticae Polonorum; 2019, 10; 111-120
2080-5497
Pojawia się w:
Acta Societatis Metheoriticae Polonorum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chondryt węglisty NWA 4446
Carbonaceous chondrite NWA 4446
Autorzy:
Przylibski, Tadeusz A.
Blutstein, Konrad
Łuszczek, Katarzyna
Gruchot, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/2087069.pdf
Data publikacji:
2022
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
meteoryt
chondryt węglowy
chondryt CV3
Asteroida typu C
pas asteroid
Układ Słoneczny
ruda
meteorite
carbonaceous chondrite
CV3 chondrite
C-type asteroid
asteroid belt
Solar System
ore mineral
Opis:
The authors carried out petrographic, mineralogical, and chemical analyses (bulk chemical composition and microanalyses of mineral chemical composition) of NWA 4446 carbonaceous chondrite. NWA 4446 chondrite is classified as CV3, S2, W2. This meteorite is a rock fragment most likely from one of the C-type asteroids orbiting the Sun in the outer part of the asteroid belt. It represents the matter formed at the earliest stages of the formation of extrasola bodies in the solar system. As a result of the research, the authors documented a wider range of variation in the chemical composition of olivine crystals (Fa: 0.67-46.57 mol%) in the matrix and chondrules, and a much narrower range of variation in the chemical com- position of pyroxene crystals (Fs: 0.90–3.35 mol%) against the data used for the classification of the meteorite. The characteristics of the chondrules, ranging in size from 0.5 to more than 1 mm, allowed concluding that they constitute about 60% of the meteorite’s vol- ume, in which they form many structural and mineral varieties PO, POP, BO, PP and RP chondrules were observed. The remaining 40% of the chondrite volume is a matrix consisting of small crystals of pyroxenes, olivines, glass, as well as opaque minerals: sulphides, FeNi alloy, native copper and gold grains, carbonaceous substance, and compact CAIs. The mineral and chemical composi- tion of CAIs shows that their dominant mineral is melilite, accompanied by diopside and spinel. The chemical composition of spinel and diopside is very similar to their total chemical formulas, while the composition of melilite shows a significant sodium deficiency. Among the opaque minerals, one phase of the FeNi dominates - awaruite (Ni 3 Fe), and sulphides are represented by troilite (FeS) and mackinawite ((Fe,Ni) 9 S 8 ). Moreover, grains of native copper with an admixture of gold and grains of native gold with an admixture of platinum, nickel and copper with a size of several μm were identified. Taking into account the admixtures contained in the above-mentioned opaque minerals (mainly Co and Cu), the parent rock of the carbonaceous chondrite NWA 4446 can be considered to have been mineralized with Fe, Ni, Co and Cu ore minerals with the content of Au and Pt. This means that, we can expect deposits of native forms of the above-mentioned metals and sulphides on the parent bodies of carbonaceous chondrites of the CV group - C-type asteroids.
Źródło:
Przegląd Geologiczny; 2022, 70, 7; 513--526
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Skład chondrytów węglistych jako wyznacznik zasobności planetoid typu C w surowce metaliczne
Composition of carbonaceous chondrites as an indicator of the abundance of C-type asteroids in metallic resources
Autorzy:
Blutstein, Konrad
Przylibski, Tadeusz A.
Łuszczek, Katarzyna
Gruchot, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/2034027.pdf
Data publikacji:
2022-03
Wydawca:
Polskie Towarzystwo Meteorytowe
Tematy:
carbonaceous chondrite
meteorite
C-type asteroid
asteroid belt
extraterrestrial mining
metal
extraterrestrial resources
Opis:
The chemical composition of carbonaceous chondrites was analysed in terms of the content of selected 24 metals, including noble metals and rare-earth metals. Based on the obtained results, the abundance of C-type asteroids in metallic raw materials was estimated and compared to the concentration of terrestrial deposits and the average content in the Earth’s crust. All the analysed elements, except rare earths, showed higher concentrations in carbonaceous chondrites than in the Earth’s crust, but most of them did not match the Earth’s deposit contents. The exception is Fe and Ni, the concentrations of which in carbonaceous chondrites significantly exceed the Earth’s deposit concentrations. The profitability of mining operations on C-type asteroids is also increased by the number of accompanying mineral commodities, mainly metals (Cr, Co, Cu, Au, Pt, Pd, Ag), and water ice. In addition, the parent bodies of carbonaceous chondrites occur relatively close to the moons of Jupiter and Saturn – potential space mission targets.
Źródło:
Acta Societatis Metheoriticae Polonorum; 2022, 13; 7-26
2080-5497
Pojawia się w:
Acta Societatis Metheoriticae Polonorum
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies