Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "strength ratio" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Badanie cech mechanicznych porowatego gipsu
The study of the mechanical properties of the porous gypsum
Autorzy:
Gontarz, J.
Podgórski, J.
Powiązania:
https://bibliotekanauki.pl/articles/390149.pdf
Data publikacji:
2015
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
cechy mechaniczne gipsu
wytrzymałość na ściskanie
wytrzymałość na rozciąganie
moduł Younga
współczynnik Poissona
gips porowaty
mechanical properties of gypsum
compressive strength
tensile strength
Young's modulus
Poisson's ratio
porous gypsum
Opis:
W pracy przedstawiono wyniki badań mechanicznych porowatego gipsu. Materiał do badań pozyskano z płyt gipsowych Pro-Monta o grubości 100mm. Wykonano badania ściskania próbek sześciennych, na podstawie których określono wartość wytrzymałości na ściskanie, współczynnik Poissona i moduł Younga. Wytrzymałość na rozciąganie określono na podstawie próby trójpunktowego zginania beleczki o przekroju prostokątnym. Wyznaczono także współczynniki tarcia powierzchni wygładzonej próbki wyciętej z płyty Pro-Monta oraz surowej powierzchni (po przecięciu płyty) o powierzchnię podkładki wykonanej z płyty pilśniowej. Porowatość materiału próbek określono standardową metodą normową. Wartości parametrów mechanicznych materiału mogą być przydatne w próbach modelowania zjawisk zniszczenia i odkształcenia materiału podejmowanych metodami analitycznymi a także numerycznymi.
The paper presents the laboratory test results of the mechanical properties of porous gypsum. Material for the study was obtained from gypsum Pro-Monta plate of 100mm thick. Based on the compression test of cubic samples, following mechanical properties were determined: compressive strength, Poisson's ratio and Young's modulus. Tensile strength was determined based on three-point bending test of rectangular cross section sample. Also a friction coefficients were investigated as follows: between the smoothed surface of the sample and a fiberboard pad, between a rough surfaces (after cutting) and fiberboard pad. A porosity of the material samples was determined using standard method. The material’s mechanical property values can be useful for modeling destruction and deformation of a porous gypsum undertaken by analytical and numerical methods.
Źródło:
Budownictwo i Architektura; 2015, 14, 4; 43-54
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ wysokiego ciśnienia i temperatury na wartości modułu Younga i współczynnika Poissona w wybranych typach skał
Influence of high pressure and temperature on Young modulus and Poisson ratio values for selected rock types
Autorzy:
Domonik, A.
Powiązania:
https://bibliotekanauki.pl/articles/2063064.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
moduł Younga
współczynnik Poissona
wysoka temperatura
wysokie ciśnienie
wytrzymałość
odkształcalność
Young modulus
Poisson ratio
high temperature
high pressure
strength
strain
Opis:
W pracy przedstawiono wpływ wysokiego ciśnienia i temperatury na zmiany wartości statycznego modułu Younga (Est) i statycznego współczynnika Poissona (νst) w wybranych odmianach litologicznych skał. Wartości tych stałych materiałowych zmieniają się wraz ze wzrostem ciśnienia (P) i temperatury (T) w zależności od odmiany litologicznej. W piaskowcach występuje generalny trend – wartość modułu Younga rośnie wraz z głębokością. Podobna tendencja występuje w przypadku granitu. Na wartość modułu Younga w dolomitach zmiany ciśnienia i temperatury nie wpływają natomiast znacząco. Z kolei w anhydrytach obserwuje się bardzo duże oscylacje wartości i znaczne rozrzuty parametru w zależności od głębokości. W bazaltach na dużej głębokości (2000 m) obserwuje się zmianę trendu z rosnącego na malejący. Natomiast dla statycznego współczynnika Poissona (νst) nie obserwuje się wyraźnych trendów. Wartości tego współczynnika nie zależną ani od głębokości, ani od temperatury.
The study presents and discusses the influence of high pressure and temperature on changes of the value of static Young modulus (Est) and static Poisson ratio ( st) for selected lithological types. The values of these material constants are changing with increasing pressure and temperature in different ways depending on lithological types. For sandstones a general trend is observed – the value of Young modulus increases with depth. Similar tendency might be observed in case of granites. Changes of pressure and temperature do not affect dolomites significantly. For anhydrite high variations of Young modulus are observed depending on depth. For basalts at high depth (2000 m) increasing trend inverts into decreasing. Static Poisson ratio ( Vst) does not have clear trends. The values of the ratio do not depend on temperature and depth as well.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2011, 446 (1); 117--122
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical aspects of wellbore stability in shales and coals
Stateczność otworów w warstwach łupków oraz węgli
Autorzy:
Szpunar, Tadeusz
Budak, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2143630.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
well
stability
shale
coal
mechanical parameters
unconfined compressive strength
Poisson’s ratio
swelling pressure
overburden
pressure
mud
density
stateczność
otwór
parametry mechaniczne
łupek
węgiel
wytrzymałość na ściskanie
współczynnik Poissona
ciśnienie pęcznienia
ciśnienie
nadkład
gęstość
płuczka
Opis:
This paper presents a simple model which can be used to calculate the following values: critical depth for which the well integrity is preserved in a shale or coal horizon with actual shale/coal mechanical parameters, actual mud density and reservoir parameters; minimum mud density at which stress concentration at the wellbore wall is below the allowable limit for a given rock’s mechanical parameters, formation pressure gradient, and overburden pressure gradient; mud density required for the preservation of shale/coal integrity at the wellbore wall at any depth, assuming that the strength parameters of shale or coal, formation pressure gradient, and overburden pressure gradient are constant. The appropriate equations were derived using the maximum principal strain hypothesis, which holds for brittle materials. It was also assumed that the radial pressure at the borehole wall is caused by the weight of overburden rocks. The author’s intention was to provide formulas which are as simple as possible and which can be easily used in practice. The final equations were based on the solution to the Lame problem, which was adopted to represent a vertical drilling well with a circular cross-section and filled with mud whose hydrostatic pressure is assumed to oppose the pore pressure. Included are effects of silt swelling pressure, overburden pressure, mud density and the mechanical properties of the rock – including the unconfined compressive strength and Poisson’ s ratio. In the case of shale or silty coal layers, the swelling pressure increases the volume of the clay minerals in the pores by diffusion the mud filtrate, which reduces the pore volume and increases the pore pressure, and therefore impacts the calculations. Presented model allows for derivation of the Hubert–Willis formula for fracturing pressure or fracture pressure gradient, which are commonly used in the oil industry. The calculation results are presented using data from the domestic oil industry and data from one of the Polish coal mines.
W artykule podano prosty model umożliwiający obliczenie następujących wielkości: głębokości krytycznej, w jakiej pokład łupków lub węgla zachowa integralność przy danych parametrach mechanicznych łupku lub węgla, danej gęstości płuczki i znanych parametrach złożowych; minimalnej gęstości płuczki, przy której koncentracja naprężeń na ścianie otworu nie przekracza granicy dopuszczalnej dla danych parametrów mechanicznych łupku lub węgla oraz gradientu ciśnienia i nadkładu; gęstości płuczki, przy której zachowana będzie integralność ścian otworu w warstwach łupku lub węgla w każdej głębokości dla danych parametrów mechanicznych łupku, przy stałym gradiencie ciśnienia i nadkładu. Wyprowadzono odpowiednie wzory, przyjmując hipotezę wytrzymałościową maksymalnego wytężenia materiału stosowaną w przypadku materiałów kruchych. Przyjęto również, że przy założeniu odkształceń sprężystych ciśnienie radialne na ścianie otworu jest spowodowane ciężarem skał nadkładu. Intencją autorów było podanie możliwie jak najprostszych wzorów, które mogłyby zostać zastosowane w praktyce. Wykorzystano rozwiązania tzw. problemu Lamégo, to jest rozpatrywano stan naprężeń na ścianie pionowego wyrobiska o przekroju kołowym, traktując skałę jako materiał sprężysty. We wzorach na wielkość naprężeń na ścianie wyrobiska o przekroju w kształcie okręgu uwzględniono wpływ ciśnienia pęcznienia, ciśnienia wywieranego przez nadkład, gęstość płuczki, jak również parametry wytrzymałościowe łupku/węgla, w tym wytrzymałość na ściskanie w jednoosiowym stanie naprężeń i współczynnik Poissona. W przypadku warstw łupków lub węgli zailonych ciśnienie pęcznienia powoduje zwiększenie objętości minerałów ilastych w porach w wyniku dyfuzji filtratu płuczki, co zmniejsza objętość porów i zwiększa ciśnienie porowe, a zatem wpływa na wyniki obliczeń. Przedstawiony model pozwala na wyprowadzenie z niego powszechnie stosowanego w przemyśle wzoru Huberta–Willisa, podającego wielkość ciśnienia szczelinowania skał na ścianie otworu oraz gradientu ciśnienia szczelinowania. Przedstawiono wyniki obliczeń dla danych z otworów z krajowego przemysłu naftowego oraz jednej z polskich kopalni węgla kamiennego.
Źródło:
Nafta-Gaz; 2021, 77, 7; 446-453
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Changes of selected structural and mechanical properties of the Strzelin granites as induced by thermal loads
Wpływ obciążeń termicznych na zmiany niektórych strukturalnych i mechanicznych właściwości granitów strzelińskich
Autorzy:
Nowakowski, A.
Młynarczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/219766.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
właściwości skał
struktura skał
obciążenie termiczne
spękania
prędkość fali dźwiękowej
porowatość
przepuszczalność
wytrzymałość na jednoosiowe ściskanie
moduł Younga
współczynnik Poissona
rock properties
rock structure
thermal load
cracks
sound wave velocity
porosity
permeability
compressive strength
Young modulus
Poisson ratio
Opis:
Temperature is one of the basic factors influencing physical and structural properties of rocks. A quantitative and qualitative description of this influence becomes essential in underground construction and, in particular, in the construction of various underground storage facilities, including nuclear waste repositories. The present paper discusses the effects of temperature changes on selected mechanical and structural parameters of the Strzelin granites. Its authors focused on analyzing the changes of granite properties that accompany rapid temperature changes, for temperatures lower than 573ºC, which is the value at which the β - α phase transition in quartz occurs. Some of the criteria for selecting the temperature range were the results of measurements carried out at nuclear waste repositories. It was demonstrated that, as a result of the adopted procedure of heating and cooling of samples, the examined rock starts to reveal measurable structural changes, which, in turn, induces vital changes of its selected mechanical properties. In particular, it was shown that one of the quantities describing the structure of the rock - namely, the fracture network - grew significantly. As a consequence, vital changes could be observed in the following physical quantities characterizing the rock: primary wave velocity (vp), permeability coefficient (k), total porosity (n) and fracture porosity (η), limit of compressive strength (Rσ1) and the accompanying deformation (Rε1), Young’s modulus (E), and Poisson’s ratio (ν).
Wśród wielu czynników wpływających na właściwości fizyczne i strukturalne skał jednym z najważniejszych jest bez wątpienia temperatura. Jej podwyższenie lub obniżenie może prowadzić do zmian struktury, spowodować przemiany fazowe składników, zmieniać skład chemiczny a wreszcie, stan skupienia skały. Procesy te mogą więc w istotny sposób zmienić właściwości fizyczne skały, co jest istotne między innymi z punktu widzenia szeroko rozumianego budownictwa podziemnego. Zmiany temperatury skały mogą wynikać z warunków naturalnych, w jakich się ona znajduje lub być konsekwencją działalności człowieka. Szczególnym przypadkiem takiej działalności jest budowa różnego typu składowisk podziemnych czy to magazynowych (np. magazyny paliw płynnych) czy też „podziemnych śmietników” na różnego rodzaju odpady, także promieniotwórcze. Artykuł skupia się na badaniach wpływu zmian temperatury na wybrane parametry mechaniczne i strukturalne granitów ze Strzelina. Autorzy skoncentrowali się na analizie zmian właściwości tych skał towarzyszących szybkim zmianom temperatury, w zakresie od temperatury pokojowej do 573ºC, czyli do temperatury, przy której zachodzi przemiana fazowa kwarcu β - α. Badania prowadzono na dwóch odmianach granitoidów z masywu Strzelin-Žulowa. Jedna z nich to odmiana „młodszą”, tzw. normalna, o charakterze adamellitu a druga to odmiana „starszą” wykazującą podobieństwo do gnejsów. Na potrzeby niniejszej pracy granit normalny nazywano granitem gruboziarnistym, a granit gnejsowaty - drobnoziarnistym. Procedura badawcza polegała na tym, że walcowe próbki skal umieszczano w piecu nagrzanym do zadanej temperatury, celem wywołania „szoku” termicznego. Stosowano temperatury 100, 200, 300 i 500 stopni Celsjusza. Po upływie 60 minut piec, w którym znajdowała się próbka wyłączano i stygł on wraz z próbką do temperatury pokojowej. Przyjęty czas wygrzewania miał zapewnić równomierne nagrzanie próbki w całej jej objętości. Wyznaczony on został na podstawie pomiarów przewodnictwa temperaturowego. Wyniki badań mikroskopowych przeprowadzone dla granitów wygrzewanych w opisany sposób wskazują, że istotną zmianą strukturalną jest powstanie nowych i (lub) rozrost już istniejących spękań. W pracy zaprezentowano wyniki badań ilościowych, które świadczą o tym, że zastosowana procedura grzania szokowego pociąga ze sobą wzrost spękań rozumiany zarówno jako wzrost ich długości jak i rozwartości a w konsekwencji ich powierzchni (patrz rys. 6), Ponadto spękania te są praktycznie niezauważalne pod mikroskopem optycznym i uwidaczniają się dopiero pod mikroskopem skaningowym, Analizując dwie odmiany granitu zauważono, że zdecydowanie większy wzrost spękań występuje w granicie gruboziarnistym. Jakkolwiek rozrost istniejących i powstanie nowych spękań nie są jedynymi zmianami strukturalnymi zauważonymi w podgrzewanych skałach (porównaj rozdział 3.1 i 3.2), to w rezultacie zaprezentowanych wyników badań przyjęto, że są one tym procesem, który wywiera największy wpływ na właściwości fizyczne badanych skał. W badanych nie zaobserwowano przemian fazowych. Zwrócono natomiast uwagę na niewielkie zmiany chemiczne. Ich przykładem może być np. oksydacja skaleni i biotytu, czego efektem jest opisana zmiana barwy biotytu (patrz rys. 5). Badania dylatometryczne, których wynik zaprezentowano na rys 17 pokazały, że względny przyrost wymiarów liniowych próbek skał towarzyszący zmianom temperatury w przyjętym zakresie osiąga 0,085% dla granitu drobno- i 0,11% dla gruboziarnistego. Zakładając, że granity można uważać za skały jednorodne i izotropowe można w tym momencie oszacować, że ich trwała zmiana objętości (dylatancja) będąca wynikiem grzania szokowego wyniesie odpowiednio 0,255% i 0,33%. Są to wartości tego samego rzędu, co pokazane wcześniej (rys. 16) wartości porowatości spękań. Potwierdzeniem przypuszczeń o związku pomiędzy przyjętą procedurą obróbki termicznej skały a powstawaniem w niej spękań są wyniki badań przepuszczalności oraz badań porozymetrycznych pokazane w rozdz. 4.2. Zależności widoczne na rys. 8, 9 i 10 pokazują, że dla badanych granitów wraz ze wzrostem temperatury grzania szokowego następuje wyraźny wzrost przepuszczalności i porowatości. Należy przy tym wziąć pod uwagę, że zarówno badania porozymetryczne jak i badania przepuszczalności dostarczają jedynie informacji na temat spękań otwartych, połączonych ze sobą i z brzegami próbki. Nie dają one natomiast żadnych informacji na temat spękań izolowanych. Analizując wyniki testów jednoosiowego ściskania stwierdzić należy, że dla badanego materiału wraz ze wzrostem temperatury grzania szokowego zaobserwowano spadek wytrzymałości oraz sztywności próbki (rys. 11 i 13) połączony ze wzrostem jej odkształcalności (rys. 12). Przyczyny takiego zachowania badanych próbek granitowych można powiązać z pojawianiem się - w wyniku procedury grzania szokowego - nowych oraz rozrostem istniejących już w próbce mikrospękań. W rozdziale 4.3 zaprezentowano wyniki pomiarów współczynnika Poissona. Dla badanych granitów trudno dopatrzyć regularności w zależności ν(Tg), co może być konsekwencją trudności związanych ze stosowaną techniką pomiaru odkształceń poprzecznych Wydaje się jednak, że anomalia zilustrowana na rys. 14 jest zjawiskiem fizycznym polegającym na tym, że deformacja poprzeczna szkieletu próbki podczas jej jednoosiowego ściskania powoduje zamykanie się w próbce tych spękań, które są odchylone od kierunku siły obciążającej. Reasumując należy stwierdzić, że w pracy wykazano, że wskutek przyjętej procedury ogrzewania i chłodzenia próbek w badanych granitach zachodzą mierzalne zmiany strukturalne pociągające za sobą istotne zmiany wybranych właściwości mechanicznych. W szczególności wykazano, że spośród wielkości charakteryzujących strukturę skały znaczącemu rozrostowi uległa sieć spękań. Konsekwencją tych zmian były znaczące zmiany takich charakteryzujących skałę wielkości fizycznych jak: prędkość podłużnej fali akustycznej (vp), współczynnik przepuszczalności (k), porowatość całkowita (n) i porowatość spękań (η), granica wytrzymałości na ściskanie (Rσ1) i towarzyszące jej odkształcenie (Rε1), moduł Younga (E) i współczynnik Poissona (ν).
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 951-974
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies