Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rare earth ore" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Seepage process on weathered crust elution-deposited rare earth ores with ammonium carboxylate solution
Autorzy:
Zou, Hualiang
Zhang, Zhenyue
Chen, Zhuo
Liu, Defeng
Chai, Xiuwei
Zhang, Han
Chi, Ru-an
Powiązania:
https://bibliotekanauki.pl/articles/1449672.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
permeability
weathered crust elution-deposited rare earth ore
ammonium carboxylate
hydrodynamics
Opis:
In order to reveal the seepage law of ammonium carboxylate solution in the in-situ leaching process of weathered crust elution-deposited rare earth ores, the effects of concentration, pH, temperature, particle size and porosity on permeability were discussed in this paper. The results shown that the seepage of the leaching agent solutions in the rare earth ore follows Darcy's law and displays a laminar flow under the conditions of this experiment and seepage velocity can be increased by changing leaching conditions. The permeability coefficients are inversely proportional to concentrations of ammonium acetate, ammonium tartrate and ammonium citrate whose concentration is greater than 0.7wt%, because the insoluble complexes formed by the reaction of ammonium citrate with RE3+ at lower concentration n decrease the permeability coefficient. The permeability coefficients of ammonium carboxylate solutions increase firstly and then decrease with the pH increased. The maximum of permeability coefficients of ammonium acetate, ammonium tartrate and ammonium citrate solution were 2.92, 1.91 and 2.70, respectively, while the pH of solution were 5, 6 and 7, respectively. Increasing temperature is beneficial for the seepage of ammonium carboxylate solution in orebody, therefore, it is helpful for leaching operation in summer. Moreover, clay minerals particle size and porosity are the key factors affecting the permeability of ammonium carboxylate solution in orebody. The permeability coefficients of ammonium acetate, ammonium tartrate and ammonium citrate solutions are 2.92×104cm/s,1.90×10-4cm/s and 2.69×10-4cm/s, respectively, at the same temperature of 293K, original particle size and porosity of the ore. Ammonium acetate solution has the best permeability in orebody.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 1; 89-101
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of chromatographic plate theory on the weathered crust elution-deposited rare earth ore with carboxylate
Autorzy:
Zhang, Zhenyue
Wang, Guangshuai
Li, Chunhua
Chi, Ruan
Long, Fei
Chen, Zhuo
Chi, Xiao Wang
Liu, Defeng
Powiązania:
https://bibliotekanauki.pl/articles/1446022.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
weathered crust elution-deposited rare earth ore
carboxylate ammonium
mass transfer
theory plate
rare earth
Opis:
To improve the leaching process of rare earth and reduce the impurities in the leachate, the carboxylate ammonium, such as ammonium acetate, ammonium citrate and ammonium tartrate, were selected as lixiviant to compare the effects of concentration, flow rate, pH and temperature on leaching mass process of rare earth and aluminum. Meanwhile, the leaching behaviors of rare earth and aluminum leached by three kinds of carboxylate ammonium were analyzed by chromatographic plate theory. The relationship between the flow rate and height equivalent (HETP) could fit well with the Van Deemter equation and there was an optimal flow rate (uopt) for the leaching of the rare earth and aluminum. Besides, the conditions of carboxylate ammonium lixiviant were optimized. The optimum concentrations of ammonium acetate, ammonium tartrate and ammonium citrate were 15 g/L, 25 g/L and 5 g/L respectively, the leaching flow rate was 0.50 mL/min, the pH value was approximatively 7.00 and the leaching temperature was 293 K to 303 K. At these conditions, the mass transfer efficiencies of three ammonium carboxylates for rare earth and aluminum was in the order of ammonium acetate > ammonium tartrate > ammonium citrate. Moreover, the ammonium acetate could commendably inhibit aluminum ions entering the lixivium.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 4; 48-62
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Direct reuse of rare earth oxalate precipitation mother liquor for rare earth leaching
Autorzy:
Wu, Xiaoyan
Zhou, Fang
Feng, Jian
Liu, Xueme
Zhang, Zhenyue
Chi, Ruan
Powiązania:
https://bibliotekanauki.pl/articles/109869.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
weathered crust elution-deposited rare earth ore
oxalic acid
precipitation
mother liquor
Opis:
In the recovery process of rare earth (RE) from the weathered crust elution-deposited rare earth ore, ammonium sulfate is used as the leaching liquor to leach RE, and then the leachate containing RE3+ can be precipitated by oxalic acid and the RE oxalate precipitation mother liquor is reused for RE leaching process after removing the residual oxalic acid by precipitation with calcium hydroxide. However, the reuse process of precipitation mother liquor cannot proceed in the strong acid and alkali restricted areas and the discharge of mother liquor which contains a large amount of ammonium salt will cause ammonia-nitrogen waste and pollution. In order to realize the reuse of the precipitation mother liquor in this area, the direct reuse of RE oxalate precipitation mother liquor for RE leaching was investigated in this study. The RE oxalate precipitation process and the RE leaching process with oxalic acid were studied. The results showed that the residual oxalic acid concentration in the mother liquor can be controlled lower than 0.8 g/dm3 at pH 2-3 when the RE concentration in the leachate was 0.1- 1.5 g/dm3 and the RE precipitation rate reached to 94%. In addition, RE leaching efficiency was up to 90% while the oxalic acid concentration in the prepared mother liquor was 0.2-0.8 g/dm3, pH 2-3. Therefore, the precipitation mother liquor with oxalic acid concentration less than 0.8 g/dm3 could be directly reused for RE leaching. However, considering the different performance of RE ores, the recommended oxalic acid concentration in the direct used precipitation mother liquor was lower than 0.6 g/dm3.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 3; 760-769
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mass transfer process of leaching weathered crust elution-deposited rare earth ore with magnesium salts
Autorzy:
Chen, Z.
Zhang, Z.
He, Z.
Chi, R.
Powiązania:
https://bibliotekanauki.pl/articles/110343.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
mass transfer
magnesium salts
theory plate
weathered crust elution-deposited rare earth ore
Opis:
In order to optimize the leaching process of weathered crust elution-deposited rare earth ore with magnesium salts, the influence of different flow rate, concentration of magnesium ions, initial pH of magnesium salts solution and experimental temperature on the mass transfer process of rare earth and aluminum was investigated in the case of using magnesium salts as leaching agent. The relationship between the flow rate μ and the HETP (Height Equivalent of Theoretical Plate) is in accordance with the Van Deemter equation when magnesium salts were used as leaching agent. The optimum condition for rare earth and aluminum were 0.4 cm3/min of flow rate and 0.2 mol/dm3 of magnesium ion concentration of magnesium sulfate, magnesium chloride and magnesium nitrate respectively. Under this condition the mass transfer efficiency of rare earth and aluminum with three kinds of magnesium salts follow the order of Mg(NO3)2>Mg(Cl)2>MgSO4. High temperature contributes to improving the mass transfer efficiency of rare earth and aluminum. Magnesium nitrate as the leaching agent can get the highest leaching mass transfer efficiency of rare earth and magnesium sulfate as the leaching agent can make the impurity leaching and mass transfer efficiency of Al is the lowest.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 1004-1013
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies