Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "video image" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Przetwarzanie cyfrowych obrazów wizyjnych i termalnych w autorskim programie Vision Plus V. 2006
Processing of video and thermal images in the Vision Plus V. 2006 authors’ software
Autorzy:
Sawicki, P.
Zwolenik, S.
Powiązania:
https://bibliotekanauki.pl/articles/130310.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
obraz wizyjny
obraz termalny
przetwarzanie
system cyfrowy
video image
thermal image
digital processing
digital system
Opis:
W pracy przedstawiono możliwości zaawansowanego przetwarzania, pomiaru oraz analizy cyfrowych obrazów wizyjnych i termalnych w środowisku nowej wersji autorskiego systemu "Vision Plus". Opracowana zewnętrzna biblioteka "Vision" umożliwia integracje obsługi, unifikacje narzędzi do przetwarzania oraz fuzje różnych danych cyfrowych na platformie pakietu "Vision Plus". Bibliotekę "Vision" charakteryzują m.in. następujące cechy: implementacja różnych rodzajów formatów danych, obsługa dowolnych rodzajów piksela, kontenery pozwalające na przechowywanie danych obrazowych, kalibracja metrologiczna obrazu, rozbudowa funkcji importu i eksportu danych, rozbudowana komunikacja z innymi programami, nakładanie obiektów graficznych wyznaczonych metodami fotogrametrycznymi, grupowanie obrazów, narzędzi oraz danych wejściowych, optymalizacja interfejsu u_ytkownika. Dodatkowy moduł "Thermal Analyst", wykorzystujący podejście obiektowe, jest funkcjonalnie zintegrowany z biblioteka "Vision". Przeznaczony jest do zaawansowanych operacji oraz analiz na cyfrowych obrazach termalnych i wizyjnych oraz ekstrakcji informacji. Program "Thermal Analyst" obsługuje maski oraz opracowane wtyczki (plugin): Subtractor, NUC (Non Uniformity Correction dla matryc detektorów termowizyjnych), Fourier Transform, Statistic (statystyka dla wybranych obrazów), Export to AVI (tworzenie sekwencji video), 2D Projective Transformation, Combine Images (działania arytmetyczne na obrazach). Biblioteke "Vision" i program "Thermal Analyst" wykonano głównie w języku Object Pascal przy wykorzystaniu pakietu Borland Developer Studio 2005. W pracy zostały omówione dwa przykłady typowych aplikacji bliskiego zasięgu (diagnostyka medyczna, badanie deformacji żelbetonowej belki stropowej). Opracowanie w środowisku multisensoralnego systemu "Vision Plus" obrazów cyfrowych pozyskanych sensorami wizyjnym i termalnym wykonano stosując specjalizowane procedury przetwarzania, pomiaru i łączenia danych (data fusion).
The paper presents the possibilities of advanced processing, measuring and analyzing visual and thermal digital images in the newest version of the "Vision Plus" authors’ system environment. The "Vision" external library enables service integration, unification of digital processing tools and various digital data fusion on the "Vision Plus" package platform. The "Vision" library is characterised by the following features: various data formats implementation, service of various pixel types, converters enabling image data storage, metrological image calibration, extension of data import and export functions, expanded communication with other applications, overlapping of graphic objects determined by photogrammetric methods, images, tools and input data grouping and user interface optimisation. The new, additional "Thermal Analyst" module created in an object-approach is functionally integrated with the "Vision" library, and is used for advanced processing and analysis of thermal and visual digital images, as well as for information extraction. It additionally operates on masks and on created plugins: Subtractor, NUC (Non Uniformity Correction for thermovision detector matrixes), Fourier Transform, Statistic (statistics of chosen images), Export to AVI (converting into a video sequence), 2D Projective Transformation, Combine Images (arithmetical operations on images). The "Vision" library and "Thermal Analyst" software were created mainly in the Object Pascal programming language using Borland Developer Studio 2005 package. Moreover, the paper describes two typical examples of close range applications: medical diagnostics and measurement of a reinforced concrete tie-beam deformation. In the multisensoral "Vision Plus" system, dedicated processing, measuring and digital data fusion procedures are applied in the process of elaboration of digital and thermal images, which were obtained by video and thermal sensors.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17b; 739-748
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
3D modeling of architectural objects from video data obtained with the fixed focal length lens geometry
Modelowanie 3D obiektów architektonicznych na podstawie danych wideo pozyskanych z wykorzystaniem obiektywu stało-ogniskowego
Autorzy:
Deliś, P.
Kędzierski, M.
Fryśkowska, A.
Wilińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/972663.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
obraz wideo
orientacja obrazu
pakiet regulacji
modelowanie 3D
video image
image orientation
bundle adjustment
terrestrial laser scanning
3D modeling
Opis:
The article describes the process of creating 3D models of architectural objects on the basis of video images, which had been acquired by a Sony NEX-VG10E fixed focal length video camera. It was assumed, that based on video and Terrestrial Laser Scanning data it is possible to develop 3D models of architectural objects. The acquisition of video data was preceded by the calibration of video camera. The process of creating 3D models from video data involves the following steps: video frames selection for the orientation process, orientation of video frames using points with known coordinates from Terrestrial Laser Scanning (TLS), generating a TIN model using automatic matching methods. The above objects have been measured with an impulse laser scanner, Leica ScanStation 2. Created 3D models of architectural objects were compared with 3D models of the same objects for which the self-calibration bundle adjustment process was performed. In this order a PhotoModeler Software was used. In order to assess the accuracy of the developed 3D models of architectural objects, points with known coordinates from Terrestrial Laser Scanning were used. To assess the accuracy a shortest distance method was used. Analysis of the accuracy showed that 3D models generated from video images differ by about 0.06 ÷ 0.13 m compared to TLS data.
Artykuł zawiera opis procesu opracowania modeli 3D obiektów architektonicznych na podstawie obrazów wideo pozyskanych kamerą wideo Sony NEX-VG10E ze stałoogniskowym obiektywem. Przyjęto założenie, że na podstawie danych wideo i danych z naziemnego skaningu laserowego (NSL) możliwe jest opracowanie modeli 3D obiektów architektonicznych. Pozyskanie danych wideo zostało poprzedzone kalibracją kamery wideo. Model matematyczny kamery był oparty na rzucie perspektywicznym. Proces opracowania modeli 3D na podstawie danych wideo składał się z następujących etapów: wybór klatek wideo do procesu orientacji, orientacja klatek wideo na podstawie współrzędnych odczytanych z chmury punktów NSL, wygenerowanie modelu 3D w strukturze TIN z wykorzystaniem metod automatycznej korelacji obrazów. Opracowane modele 3D zostały porównane z modelami 3D tych samych obiektów, dla których została przeprowadzona samokalibracja metodą wiązek. W celu oceny dokładności opracowanych modeli 3D obiektów architektonicznych wykorzystano punkty naziemnego skaningu laserowego. Do oceny dokładności wykorzystano metodę najkrótszej odległości. Analiza dokładności wykazała, że dokładność modeli 3D generowanych na podstawie danych wideo wynosi około 0.06 ÷ 0.13m względem danych NSL.
Źródło:
Geodesy and Cartography; 2013, 62, 2; 123-138
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie obrazu wideo do wyznaczania położenia przemieszczającego się obiektu
Utilization of cameras image for moving vehicle localization
Autorzy:
Typiak, A.
Powiązania:
https://bibliotekanauki.pl/articles/210289.pdf
Data publikacji:
2010
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
maszyny robocze
zdalne sterowanie
wyznaczanie położenia
obrazy wideo
engineering machines
remote control
localization
video image
laser telemeter
Opis:
Wyznaczanie trasy na podstawie analizy obrazów wizyjnych umożliwi budowę układu sterowania nadążnego dla Bezzałogowych Pojazdów Lądowych. Warunkiem koniecznym dla opracowania takiego układu jest opracowanie metody kalibracji kamer. Na podstawie analizy literatury i badań własnych przyjęto metodę kalibracji z wykorzystaniem wzorca przestrzennego. Przeprowadzone na stanowisku pomiary umożliwiły wyznaczenie zewnętrznych i wewnętrznych parametrów systemu wizyjnego bez demontowania układu wizyjnego. W drugiej części artykułu opisano metodę wyznaczania odległości do obiektu o znanych wymiarach na podstawie analizy obrazu wideo przy określonym położeniu i orientacji kamery. Badania terenowe wykazały, że dla kamery o rozdzielczości 3072 × 2304 błąd względny wyznaczania odległości na dystansie od 0,5 do 45 m nie przekraczał 2%. W dalszych pracach rozwojowych zakłada się uzyskanie z kamer obrazu przestrzennego. Umożliwi to urzeczywistnienie widoku obserwowanych obiektów i precyzyjniejsze określenie ich położenia. Budowa bezzałogowych pojazdów transportowych wymaga podjęcia i realizacji szerokiego spektrum prac badawczych. Jednym z problemów jest opracowanie systemu sterowania w oparciu o wyznaczanie położenia i odwzorowanie trasy wytypowanego obiektu. W referacie przedstawiono wyniki badań nad zastosowaniem kamery wideo do wyznaczania położenia obiektów w otoczeniu pojazdu bezzałogowego.
The ability to set up a path on the basis of images acquired from onboard cameras will allow construction of steering systems for the Unmanned Ground Vehicles. The necessity in this case is to develop effective methods for camera calibration. Basing on the literature analysis and on own research, a method using a three-dimensional pattern was chosen. Tests carried out in the laboratory conditions proven the ability to calculate external and internal parameters of the system without the need to disassemble the entire vision system, while using this solution. Second part of the article focuses on a method to designate the distance of an object with known dimensions (length, height, etc.), based on the video footage from a camera which position and orientation is also known. Field test shown that it is possible to achieve less than 2% error while using a camera resolutions of 3072 × 2304 on a distance from 0.5 to 45 m with this solution. Further research is concentrated on acquiring a stereo-image which will grant the operator a better visualization of the surrounding and will allow more accurate calculations for the steering system. Building unmanned transport vehicles requires a lot of research to be carried out in different areas. One of them is creating a steering system based on position localization and path visualization of a specified object. The article shows research results from a video camera for calculating the position of objects in the vicinity of an Unmanned Ground Vehicle.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2010, 59, 1; 225-238
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rekonstrukcja scen termalnych w autorskim programie Vision Plus 3D
Reconstruction of thermal scenes in the authors’ software, Vision Plus 3D
Autorzy:
Sawicki, P.
Zwolenik, S.
Grabowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/129779.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
obraz wizyjny
obraz termalny
scena 3D
metoda DLT
rekonstrukcja 3D
emisyjność kierunkowa
video image
thermal image
scene 3D
DLT method
3D reconstruction
directional emissivity
Opis:
Praca przedstawia algorytm rekonstrukcji 3D scen termalnych w celu korekcji emisyjności kierunkowej, który został zaimplementowany w autorskim programie „Vision Plus 3D”. Wyznaczenie orientacji cyfrowych obrazów wizyjnych i termalnych oraz położenia rejestrowanego obiektu w przestrzeni 3D realizuje zastosowana w programie metoda bezpośredniej transformacji liniowej DLT (Direct Linear Transformation). Opracowany program „Vision Plus 3D” obsługuje różne formaty rastrowe. Zapis i import danych pomiarowych oraz narzędzi jest wykonywany w plikach w formacie XML. Interaktywny, równoczesny pomiar na obrazach cyfrowych punktów i zdefiniowanych obiektów geometrycznych wspomagany jest dodatkowymi funkcjami obsługi oraz algorytmami automatyzującymi pomiar. Aplikacja jest funkcjonalnie powiązana z platformą bazowego cyfrowego sytemu wideo-termalnego „Vision Plus”, zewnętrzną biblioteką „Vision” oraz dodatkowym modułem „Vision Plus Thermal Analyst”. „Vision Plus 3D” jest obiektową, 32-bitową aplikacją Windows, oprogramowaną w języku Object Pascal przy wykorzystaniu pakietu Borland Developer Studio. Opracowany program tworzy nowe możliwości analizy, pomiaru oraz zaawansowanego przetwarzania cyfrowych obrazów wizyjnych i termalnych. W pracy przedstawiono eksperyment rekonstrukcji 3D sceny termalnej dla powierzchni nachylonej za pomocą programu „Vision Plus 3D”. Na podstawie otrzymanych danych obliczony został kąt między wektorem normalnym do zdefiniowanej płaszczyzny obiektu oraz osią optyczną kamery termalnej. Wyznaczenie średniej temperatury radiacyjnej oraz korekcję temperatury metodą korekcji emisyjności kierunkowej w zdefiniowanym obszarze termogramu przeprowadzono w aplikacji „Vision Plus Thermal Analyst”.
The paper presents an algorithm for 3D reconstruction of thermal scenes for the purposes of directional emissivity correction, which was implemented in the authors’ software „Vision Plus 3D”. Determination of the orientation of images (visual and thermal) and the position of a recorded object in 3D space is enabled by the Direct Linear Transformation method used in the application. „Vision Plus 3D” software works with various raster formats. Saving and importing of measurement data as well as of tools is executed using XML format files. Interactive, simultaneous measurement of points and defined geometrical objects from digital images is supported by additional functions and algorithms, which automate the measurement. The application is functionally related to the „Vision Plus” digital video-thermal basic system platform, the „Vision” external library and the „Vision Plus Thermal Analyst” additional module. „Vision Plus 3D” is a 32-bit Windows object application, programmed in Object Pascal language using the Borland Developer Studio package. This software opens new possibilities for analysis, measurement and advanced processing of visual and thermal digital images. The paper presents experimental reconstruction of the 3D thermal scene of a sloping surface using the „Vision Plus 3D” application. The angle between a normal vector of a defined plane and the optical axis of the thermal camera is calculated based on the data received. The calculation of average radiant temperature as well as a temperature correction in the defined area of the thermal image using the directional emissivity correction method were both carried out in „Vision Plus Thermal Analyst” module.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2009, 20; 377-386
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies