Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "time windows" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Multi-objective optimization of vehicle routing problem using evolutionary algorithm with memory
Autorzy:
Podlaski, K.
Wiatrowski, G.
Powiązania:
https://bibliotekanauki.pl/articles/305266.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
vehicle routing problem
time windows
evolutionary algorithms
multi-objective optimization
Opis:
The idea of a new evolutionary algorithm with memory aspect included is proposed to find multiobjective optimized solution of vehicle routing problem with time windows. This algorithm uses population of agents that individually search for optimal solutions. The agent memory incorporates the process of learning from the experience of each individual agent as well as from the experience of the population. This algorithm uses crossover operation to define agents evolution. In the paper we choose as a base the Best Cost Route Crossover (BCRC) operator. This operator is well suited for VPRTW problems. However it does not treat both of parent symmetrically what is not natural for general evolutionary processes. The part of the paper is devoted to find an extension of the BCRC operator in order to improve inheritance of chromosomes from both of parents. Thus, the proposed evolutionary algorithm is implemented with use of two crossover operators: BCRC and its extended-modified version. We analyze the results obtained from both versions applied to Solomon’s and Gehring & Homberger instances. We conclude that the proposed method with modified version of BCRC operator gives statistically better results than those obtained using original BCRC. It seems that evolutionary algorithm with memory and modification of Best Cost Route Crossover Operator lead to very promising results when compared to the ones presented in the literature.
Źródło:
Computer Science; 2017, 18 (3); 269-286
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A logistic optimization for the vehicle routing problem through a case study in the food industry
Autorzy:
Akpinar, Muhammet Enes
Powiązania:
https://bibliotekanauki.pl/articles/1835487.pdf
Data publikacji:
2021
Wydawca:
Wyższa Szkoła Logistyki
Tematy:
vehicle routing problem
time windows
optimization
metaheuristic algorithm
genetic algorithm
trasa pojazdu
okna czasowe
optymalizacja
algorytm metaheurystyczny
algorytm genetyczny
Opis:
In this study, the food delivery problem faced by a food company is discussed. There are seven different regions where the company serves food and a certain number of customers in each region. The time of requesting food for each customer varies according to the shift situation. This type of problem is referred to as a vehicle routing problem with time windows in the literature and the main aim of the study is to minimize the total travel distance of the vehicles. The second aim is to determine which vehicle will follow which route in the region by using the least amount of vehicle according to the desired mealtime. Methods: In this study, genetic algorithm methodology is used for the solution of the problem. Metaheuristic algorithms are used for problems that contain multiple combinations and cannot be solved in a reasonable time. Thus in this study, a solution to this problem in a reasonable time is obtained by using the genetic algorithm method. The advantage of this method is to find the most appropriate solution by trying possible solutions with a certain number of populations. Results: Different population sizes are considered in the study. 1000 iterations are made for each population. According to the genetic algorithm results, the best result is obtained in the lowest population size. The total distance has been shortened by about 14% with this method. Besides, the number of vehicles in each region and which vehicle will serve to whom has also been determined. This study, which is a real-life application, has provided serious profitability to the food company even from this region alone. Besides, there have been improvements at different rates in each of the seven regions. Customers' ability to receive service at any time has maximized customer satisfaction and increased the ability to work in the long term. Conclusions: The method and results used in the study were positive for the food company. However, the metaheuristic algorithm used in this study does not guarantee an optimal result. Therefore, mathematical models or simulation models can be considered in terms of future studies. Besides, in addition to the time windows problem, the pickup problem can also be taken into account and different solution proposals can be developed.
Źródło:
LogForum; 2021, 17, 3; 387-397
1734-459X
Pojawia się w:
LogForum
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies