Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chu, Lin" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
New versions on Nikaidôs coincidence theorem
Autorzy:
Chu, Liang-Ju
Lin, Ching-Yan
Powiązania:
https://bibliotekanauki.pl/articles/729530.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Vietoris map
Nikaidô's coincidence theorem
Fan-type element
Górniewicz-type fixed point theorem
coincidence
variational inequality
acyclic multifunction
partition of unity
local intersection property
KKM mapping
locally selectionable multifunction
Opis:
In 1959, Nikaidô established a remarkable coincidence theorem in a compact Hausdorff topological space, to generalize and to give a unified treatment to the results of Gale regarding the existence of economic equilibrium and the theorems in game problems. The main purpose of the present paper is to deduce several generalized key results based on this very powerful result, together with some KKM property. Indeed, we shall simplify and reformulate a few coincidence theorems on acyclic multifunctions, as well as some Górniewicz-type fixed point theorems. Beyond the realm of monotonicity nor metrizability, the results derived here generalize and unify various earlier ones from the classic optimization theory. In the sequel, we shall deduce two versions of Nikaidô's coincidence theorem about Vietoris maps from different approaches.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2002, 22, 1; 79-95
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On discontinuous quasi-variational inequalities
Autorzy:
Chu, Liang-Ju
Lin, Ching-Yang
Powiązania:
https://bibliotekanauki.pl/articles/729419.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
variational inequality
quasi-variatioal inequality
Ricceri's conjecture
Karamardian condition
Hausdorff continuous multifunction
Kneser's minimax inequality
Opis:
In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and
⟨y̅,z-x̅⟩ ≥ 0, ∀ z ∈ S(x̅),
where C,D are two closed convex subsets of a normed linear space X with dual X*, and $T:X → 2^{X*}$ and $S:C → 2^D$ are multifunctions. In fact, we extend the above to an existence result proposed by Ricceri [12] for the case where the multifunction T is required only to satisfy some general assumption without any continuity. Under a kind of Karmardian's condition, we give a partial affirmative answer to an unbounded quasi-variational inequality problem.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2007, 27, 2; 199-212
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Variational inequalities in noncompact nonconvex regions
Autorzy:
Lin, Ching-Yan
Chu, Liang-Ju
Powiązania:
https://bibliotekanauki.pl/articles/729495.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Nikaidô's coincidence theorem
variational inequality
nearly convex
V₀-Karamardian condition
Saigal condition
acyclic multifunction
algebraic interior
bounding points
Opis:
In this paper, a general existence theorem on the generalized variational inequality problem GVI(T,C,ϕ) is derived by using our new versions of Nikaidô's coincidence theorem, for the case where the region C is noncompact and nonconvex, but merely is a nearly convex set. Equipped with a kind of V₀-Karamardian condition, this general existence theorem contains some existing ones as special cases. Based on a Saigal condition, we also modify the main theorem to obtain another existence theorem on GVI(T,C,ϕ), which generalizes a result of Fang and Peterson.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2003, 23, 1; 5-19
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies