Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "water depth" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Boussinesq-type Equations for Long Waves in Water of Variable Depth
Autorzy:
Szmidt, K.
Powiązania:
https://bibliotekanauki.pl/articles/241151.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Budownictwa Wodnego PAN
Tematy:
long waves
wave propagation
variable water depth
Opis:
The paper deals with the problem of the transformation of long gravitational waves propagating in water of variable depth. The main attention of the paper is focused on the derivation of equations describing this phenomenon. These equations are derived under the assumption that the non-viscous fluid is incompressible and rotation free, and that the fluid velocity components may be expressed in the form of the power series expansions with respect to the water depth. This procedure makes it possible to transform the original two-dimensional problem into a one-dimensional one, in which all unknown variables depend on time and a horizontal coordinate. The partial differential equations derived correspond to the conservation of mass and momentum. The solution of these equations is constructed by the finite difference method and an approximate discrete integration in the time domain. In order to estimate the accuracy of this formulation, theoretical results obtained for a specific problem were compared with experimental measurements carried out in a laboratory flume. The comparison shows that the proposed theoretical formulation is an accurate description of long waves propagating in water of variable depth.
Źródło:
Archives of Hydro-Engineering and Environmental Mechanics; 2011, 58, 1-4; 3-21
1231-3726
Pojawia się w:
Archives of Hydro-Engineering and Environmental Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new form of Boussinesq equations for long waves in water of non-uniform depth
Autorzy:
Szmidt, J.
Hedzielski, B.
Powiązania:
https://bibliotekanauki.pl/articles/201637.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
long wave
Boussinesq equation
wave transformation
variable water depth
Opis:
The paper describes the non-linear transformation of long waves in shallow water of variable depth. Governing equations of the problem are derived under the assumption that the non-viscous fluid is incompressible and the fluid flow is a rotation free. A new form of Boussinesq-type equations is derived employing a power series expansion of the fluid velocity components with respect to the water depth. These non-linear partial differential equations correspond to the conservation of mass and momentum. In order to find the dispersion characteristic of the description, a linear approximation of these equations is derived. A second order approximation of the governing equations is applied to study a time dependent transformation of waves in a rectangular basin of water of variable depth. Such a case corresponds to a spatially periodic problem of sea waves approaching a near-shore zone. In order to overcome difficulties in integrating these equations, the finite difference method is applied to transform them into a set of non-linear ordinary differential equations with respect to the time variable. This final set of these equations is integrated numerically by employing the fourth order Runge - Kutta method.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2012, 60, 3; 631-643
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Lagrangian Finite Element Analysis of Gravity Waves in Water of Variable Depth
Autorzy:
Staroszczyk, R.
Powiązania:
https://bibliotekanauki.pl/articles/241185.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Budownictwa Wodnego PAN
Tematy:
gravity water wave
variable water depth
transient problem
Lagrangian formulation
finite element method
Opis:
The paper is concerned with the problem of gravitational wave propagation in water of variable depth. The problem is formulated in the Lagrangian description, and the ensuing equations are solved numerically by a finite element method. In computations a convecting mesh that follows the material fluid particles is used. As illustrations, results of numerical simulations carried out for plane gravity waves propagating over bottoms of simple geometry are presented. For parameters typical of a laboratory flume, the transformation of a transient wave, generated by a single movement of a piston-like wave maker, is investigated. The results show the evolution of the free-surface elevation, displaying steepening of the wave over sloping beds and its gradual attenuation in regions of uniform depth.
Źródło:
Archives of Hydro-Engineering and Environmental Mechanics; 2009, 56, 1-2; 43-61
1231-3726
Pojawia się w:
Archives of Hydro-Engineering and Environmental Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies