Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Januszewicz, W" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Effect of grinding conditions of gears made of 20MnCr5 steel after single-piece flow heat treatment on the condition of the surface layer of the tooth working surface
Autorzy:
Stachurski, W.
Janica, J.
Januszewicz, B.
Pawłowski, W.
Sawicki, J.
Powiązania:
https://bibliotekanauki.pl/articles/24200636.pdf
Data publikacji:
2023
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
thermo-chemical treatment
vacuum carburizing
single-piece flow method
gear grinding
technological surface layer
obróbka cieplno-chemiczna
nawęglanie próżniowe
jednoczęściowa metoda przepływowa
szlifowanie kół zębatych
technologiczna warstwa wierzchnia
Opis:
Purpose: The paper investigated the effect of selected processing conditions during gear grinding on the value and distribution of microhardness and residual stress formed in the technological surface layer of gears after thermochemical treatment (TCT) conducted by a continuous single-piece flow method. Design/methodology/approach: The gears were carburised with LPC at 920°C, then quenched in a 4D Quenching chamber at 7 bar and tempered at 190ºC for 3 hours. In the next step, the working surfaces of the gear teeth were ground by supplying grinding fluid (GF) to the grinding zone using the WET method and the MQL method with a minimum amount. Measurements were made on the distribution of microhardness and residual stress formed in the technological surface layer of gears after thermochemical treatment and after the grinding process. Findings: The results of the study showed the influence of workpiece speed vw and the method of delivery to the grinding zone GF on selected parameters describing the condition of the technological surface layer of the teeth of gears made of 20MnCr5 steel. The grinding process with a white aluminium oxide grinding wheel causes deterioration in the material's residual stress state. For each of the three analysed workpiece speeds vw, smaller changes in microhardness with respect to the microhardness of the material before grinding occur in the surface layer of samples ground with GF fed with the MQL method. Similarly, residual stress values are in the area of favourable compressive stresses. Research limitations/implications: Environmental considerations and the need to comply with increasingly stringent environmental protection and worker safety regulations are pushing researchers and entrepreneurs to completely eliminate or reduce the consumption of grinding fluids in the grinding process. Based on the research and analysis carried out in this study, it was concluded that applying minimum GF by the MQL method could be an alternative to the conventional WET method.Practical implications: In sustainable manufacturing, it is extremely important to produce high-quality items while reducing the cost of manufacturing and taking care of the environment and workers' health. This includes the manufacture of gears, a basic component used in gear transmissions in the automotive industry, for example. The research has established that it is possible to use the MQL method, which reduces the amount of GF used when grinding the working surfaces of gear teeth, as an alternative to the conventional WET method. Originality/value: The conducted research was the first to determine the most favourable conditions, in terms of the obtained residual stresses and microhardness, for grinding the working surface of gear teeth using the MQL method.
Źródło:
Archives of Materials Science and Engineering; 2023, 120, 2; 60--69
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An effect of grinding on microhardness and residual stress in 20MnCr5 following single-piece flow low-pressure carburizing
Autorzy:
Stachurski, W.
Krupanek, K.
Januszewicz, B.
Rosik, R.
Wojcik, R.
Powiązania:
https://bibliotekanauki.pl/articles/99540.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
vacuum carburizing
single-piece flow
surface grinding
microhardness
residual stress
Opis:
The aim of the experiment described in the paper was to determine the effect of selected conditions of abrasive machining on the size and distribution of microhardness and residual stresses developed in the technological surface layer of flat specimens made of 20MnCr5 steel. The specimens were subjected to single-piece flow low-pressure carburizing (LPC) and high-pressure gas quenching (HPGQ) in a 4D Quenching chamber, in order to achieve the effective case depth of ECD=0.4 mm. This was followed by grinding the specimens with Quantum and Vortex alumina grinding wheels made by Norton. Cooling and lubricating liquid were supplied to the grinding zone in both cases by the flood (WET) method and by the minimum quantity lubrication (MQL) method. The measurements for each specimen were made twice - after the thermo-chemical treatment and after the grinding. Microhardness and residual stress was measured by the X-ray method sin2Ψ. The final part of the article provides an analysis of the measurement results and presents conclusions and recommendations for further studies.
Źródło:
Journal of Machine Engineering; 2018, 18, 4; 73-85
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies