Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dąbek, L" wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Zastosowanie sorpcji i zaawansowanego utleniania do usuwania fenoli i ich pochodnych z roztworów wodnych
Application of Sorption and Advanced Oxidation Processes for Removal of Phenols from Aqueous Solutions
Autorzy:
Dąbek, L.
Powiązania:
https://bibliotekanauki.pl/articles/1818555.pdf
Data publikacji:
2015
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
fenol
chlorofenol
węgiel aktywny
utlenianie
rodnik hydroksylowy
phenol
chlorophenol
activated carbon
oxidation
hydroxyl radicals
Opis:
The removal of organic contaminants such as aliphatic and aromatic hydrocarbons, phenols and related compounds, halogenated compounds, polycyclic aromatic hydrocarbons, aldehydes, ketones, acids, detergents, fats, dyes etc. from water and sewage is still an interesting and significant problem in environmental engineering. Both household and industrial waste is a source of organic contaminants in the environment. Higher and higher requirements regarding treated waste that is directed to water or the ground require constant development of the waste treatment process. The literature data and implemented solutions indicate that more and more attention is now paid to the use of sorption and advanced oxidation processes for the removal of organic compounds. The highest significance and application among available sorbents has activated carbon. The sorption properties of activated carbon are dependent on its porous structure, produced by the system of interconnected macro-, meso- and micropores as well as the chemical composition of the surface resulting from the presence of oxygen functional groups. Activated carbon is especially useful as sorbents of phenol and chlorophenol. It has been shown that the adsorption ability of activated carbon depends on the specific surface area, porosity and surface chemical composition. High affinity of phenol to the surface of activated carbon is related to the creation of donor-acceptor complexes between alkaline locations on the sorbent’s surface and the aromatic ring. Oxidation of activated carbon’s surface leading to increased acidity lowers the sorption capacity of activated carbon. While the presence of metals increases the sorption capacity of activated carbon in relation to phenol due to the donor-acceptor interaction of metal-electrons of π aromatic ring in the phenol particle. Another method of successful oxidation of phenols is their oxidation especially with the AOP methods (Advanced Oxidation Processe)s. A characteristic feature of these methods is oxidation of generally all organic compounds to CO2, H2O and inorganic compounds with the use of the hydroxyl radical OH* (generated in the solution) of extremely high oxidising potential of 2,8 V. Phenols and the related compounds quite easily undergo oxidation, especially with Fenton and photo-Fenton reactions. Both sorption and oxidation of organic compounds (including phenols) with AOP methods have advantages (high output and efficiency) and disadvantages (treatment of used sorbents, significant use of oxidants and increased sewage volume). In order to focus on the advantages of sorption and advanced oxidation while limiting their disadvantageous effect a combination of these two processes is considered. In this case the removal of contaminants is arranged as a two- or one-stage process. In the first one the removal of organic compounds covers sorption and then oxidation of the adsorbed substances with the use of AOP, which leads to a simultaneous regeneration of activated carbon. While in the latter case simultaneous sorption and oxidation of organic compounds is considered. In these both cases activated carbon acts as a sorbent of organic compounds and catalyst in the production of hydroxyl radicals OH* which are responsible for oxidation of organic compounds both in the solution and adsorbed on the activated carbon. It has been proven that in the presence of activated carbon in the environment of hydrogen peroxide, oxidation occurs of such organic compounds that do not undergo oxidation with the same oxidant in the aqueous solution. The applicability of activated carbon for the simultaneous removal of organic compounds is dependent on both their sorption and catalytic properties. Activated carbon should be alkaline, have high specific volume, pores’ volume, iodine number and significant dechlorination ability.The applicability of oxidation of organic compounds with the use of hydroxyl radicals created on the surface of activated carbon for regeneration of the used sorbents has also been proven.
Źródło:
Rocznik Ochrona Środowiska; 2015, Tom 17, cz. 1; 616-645
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessing the effect of iron ions adsorbed on activated carbon and the efficiency of decomposition of organic impurities using selected oxidizing agents
Ocena wpływu zaadsorbowanych na węglu aktywnym jonów żelaza na skuteczność degradacji zanieczyszczeń organicznych wybranymi czynnikami utleniającymi
Autorzy:
Dąbek, L.
Ozimina, E.
Picheta-Oleś, A.
Powiązania:
https://bibliotekanauki.pl/articles/402465.pdf
Data publikacji:
2011
Wydawca:
Politechnika Świętokrzyska w Kielcach. Wydawnictwo PŚw
Tematy:
węgiel aktywny
sorpcja
regeneracja
utlenianie
metale ciężkie
activated carbon
sorption
regeneration
oxidation
heavy metals
Opis:
This study analyzes the effect of Fe (II) ions adsorbed on activated carbon on the efficiency of phenol decomposition, using H2O2, Fe2+/H2O2 (Fenton's reaction) and 1:1 HNO3 solutions (in the third case, in the presence of microwaves), and, accordingly, their effect on the sorptive capacity of regenerated activated carbons. The chemical regeneration of the activated carbons using the Advanced Oxidation Process (AOP) method resulted in partial oxidation of the adsorbed organic substance. The presence of Fe(II) ions improved the efficiency of the regeneration process. The oxidation of the adsorbed phenol, however, caused a significant loss of mass of the activated carbon.
Źródło:
Structure and Environment; 2011, 3, 1; 29-35
2081-1500
Pojawia się w:
Structure and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sorptive and Catalytic Properties of Activated Carbon Used for the Removal of Crystal Violet from an Aqueous Solution in the Presence of Hydrogen Peroxide
Sorpcyjno-katalityczna rola węgla aktywnego w procesie usuwania fioletu krystalicznego z roztworu wodnego w obecności nadtlenku wodoru
Autorzy:
Dąbek, L.
Ozimina, E.
Picheta-Oleś, A.
Powiązania:
https://bibliotekanauki.pl/articles/388075.pdf
Data publikacji:
2010
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
węgiel aktywny
utlenianie
sorpcja
fiolet krystaliczny
nadtlenek wodoru
activated carbon
oxidation
sorption
crystal violet
hydrogen peroxide
Opis:
Activated carbons play an important role in the processes of purifying waters, wastewaters and gases. While analyzing the effectiveness of these processes mainly the sorptive properties of the activated carbons are considered, taking no account of their catalytic abilities. According to the data presented in the literature, activated carbons catalyze the decomposition of oxidants such as hydrogen peroxide or ozone creating the hydroxyl radical, which is the strongest oxidating factor. This reaction may be used to oxidate the organic impurities in the aqueous solutions. In the activated carbon – oxidant – organic impurities system most probably both the processes of sorption and catalytic oxidation of the organic compounds take place. In this paper the effectiveness of removing the crystal violet from the aqueous solution in the presence od various activated carbons and hydrogen peroxide was examined (Cd = 20 mg/dm3, CH O 2 2 (1) = 375 mg/dm3, CH O 2 2 (2) = 3750 mg/dm3, mac = 0.5 g, t = 160 min). In the research the commercial activated carbon WDex, activated carbon WDex oxidated with hydrogen peroxide and activated carbon WDex saturated with crystal violet and regenerated with Fe2+/H2O2 and Fe2+/Ox (sorption – oxidation of adsorbed compounds) were used. It has been observed that in specified conditions the effectiveness of removing the dye in the presence of carbon and oxidant is greater (72 mg/g) than the sorptive abilities of the activated carbons (34 mg/g). It has been also concluded that the efficiency of the process depends on the type of the activated carbon used, the amount of the hydrogen peroxide and the method of carrying out the process. It has been also show that the effectiveness of removing crystal violet from the aqueous solution is greater when the process is carried out in the activated carbon – crystal violet – hydrogen peroxide system than in case of removing the dye by the sorption on activated carbon – regeneration of the activated carbon – subsequent regeneration (56 mg/g). The results of the research confirm both the sorptive and catalytic properties of the activated carbons in the analyzed process.
Węgle aktywne odgrywają ważną rolę w procesach oczyszczania wód, ścieków oraz gazów. Analizując efektywnooeć tych procesów, bierze się pod uwagę głównie właoeciwooeci sorpcyjne węgli aktywnych, pomijając ich zdolności katalityczne. Dane literaturowe wskazują, że węgle aktywne katalizują reakcję rozkładu utleniaczy, takich jak nadtlenek wodoru czy ozon z utworzeniem najsilniejszego czynnika utleniającego jakim jest rodnik hydroksylowy. Reakcja ta z powodzeniem może być wykorzystana do utleniania zanieczyszczeń organicznych w roztworach wodnych. W układzie węgiel aktywny – utleniacz – zanieczyszczenia organiczne, najprawdopodobniej mają miejsce zarówno procesy sorpcji, jak i katalitycznego utleniania substancji organicznych. W pracy podjęto badania nad efektywnością usuwania fioletu krystalicznego z roztworu wodnego w obecności różnych węgli aktywnych i nadtlenku wodoru (Cd = 20 mg/dm3, CH O 2 2 (1) = 375 mg/dm3, CH O 2 2 (2) = 3750 mg/dm3, mac = 0,5 g, t = 160 min). W badaniach wykorzystano handlowy węgiel aktywny WDex, węgiel aktywny WDex utleniany nadtlenkiem wodoru oraz węgiel aktywny WDex nasycony fioletem krystalicznym i poddany regeneracji za pomocą Fe2+/H2O2 i Fe2+/Ox (sorpcja – utlenianie zaadsorbowanych substancji). Zaobserwowano, że w zadanych warunkach skuteczność usuwania barwnika w obecności węgla i utleniacza jest większa (72 mg/g) w stosunku do sorpcyjnych zdolności węgli aktywnych (34 mg/g). Stwierdzono również, że wydajność tego procesu zależy od rodzaju zastosowanego węgla aktywnego, jak i od ilości nadtlenku wodoru oraz sposobu realizacji procesu. Wykazano, że efektywność usuwania fioletu krystalicznego z roztworu wodnego jest większa w przypadku realizacji tego procesu w układzie węgiel aktywny – fiolet krystaliczny – nadtlenek wodoru, w porównaniu do usuwania barwnika poprzez sorpcję na węglu aktywnym – regeneracja węgla aktywnego – ponowna regeneracja (56 mg/g). Uzyskane wyniki badań potwierdzają zarówno sorpcyjne, jak i katalityczne właściwości węgli aktywnych w analizowanym procesie.
Źródło:
Ecological Chemistry and Engineering. A; 2010, 17, 11; 1423-1433
1898-6188
2084-4530
Pojawia się w:
Ecological Chemistry and Engineering. A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sorpcyjno-katalityczna rola węgla aktywnego w procesie usuwania fioletu krystalicznego z roztworu wodnego w obecności nadtlenku wodoru
Sorptive-catalitic role of activated carbon in the process of removing crystal violet from the aqueous solution in the presence of hydrogen peroxide
Autorzy:
Dąbek, L.
Ozimina, E.
Picheta-Oleś, A.
Powiązania:
https://bibliotekanauki.pl/articles/126680.pdf
Data publikacji:
2010
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
węgiel aktywny
utlenianie
sorpcja
fiolet krystaliczny
nadtlenek wodoru
activated carbon
oxidation
sorption
crystal violet
hydrogen peroxide
Opis:
Węgle aktywne odgrywają ważną rolę w procesach oczyszczania wód, ścieków oraz gazów. Analizując efektywność tych procesów, bierze się pod uwagę głównie właściwości sorpcyjne węgli aktywnych, pomijając ich zdolności katalityczne. Dane literaturowe wskazują, że węgle aktywne katalizują reakcję rozkładu utleniaczy, takich jak nadtlenek wodoru czy ozon z utworzeniem najsilniejszego czynnika utleniającego, jakim jest rodnik hydroksylowy. Reakcja ta z powodzeniem może być wykorzystana do utleniania zanieczyszczeń organicznych w roztworach wodnych. W układzie węgiel aktywny - utleniacz - zanieczyszczenia organiczne najprawdopodobniej mają miejsce zarówno procesy sorpcji, jak i katalitycznego utleniania substancji organicznych. W prezentowanej pracy podjęto badania nad efektywnością usuwania fioletu krystalicznego z roztworu wodnego w obecności różnych węgli aktywnych i nadtlenku wodoru (Cd = 20 mg/dm3, CH2O2(1) = 375 mg/dm3, CH2O2(2) = 3750 mg/dm3, mac = 0,5 g, t = 160 min). W badaniach wykorzystano handlowy węgiel aktywny WDex, węgiel aktywny WDex utleniany nadtlenkiem wodoru oraz węgiel aktywny WDex nasycony fioletem krystalicznym i poddany regeneracji za pomocą Fe2+/H2O2 i Fe2+/CaO2 (sorpcja - utlenianie zaadsorbowanych substancji). Zaobserwowano, że w zadanych warunkach skuteczność usuwania barwnika w obecności węgla i utleniacza jest większa (72 mg/g) w porównaniu do sorpcyjnych zdolności węgli aktywnych (34 mg/g). Stwierdzono również, że wydajność tego procesu zależy zarówno od rodzaju zastosowanego węgla aktywnego, jak i od ilości nadtlenku wodoru oraz sposobu realizacji procesu. Wykazano, że efektywność usuwania fioletu krystalicznego z roztworu wodnego jest większa w przypadku realizacji tego procesu w układzie węgiel aktywny - fiolet krystaliczny - nadtlenek wodoru, w porównaniu do usuwania barwnika poprzez sorpcję na węglu aktywnym - regeneracja węgla aktywnego - ponowna regeneracja (56 mg/g). Uzyskane wyniki badań potwierdzają zarówno sorpcyjne, jak i katalityczne właściwości węgli aktywnych w analizowanym procesie.
Activated carbons play an important role in the processes of purifying waters, wastewaters and gases. While analyzing the effectiveness of these processes mainly the sorptive properties of the activated carbons are considered, taking no account of their catalytic abilities. According to the data presented in the literature, activated carbons catalyze the decomposition of oxidants such as hydrogen peroxide or ozone creating the hydroxyl radical, which is the strongest oxidating factor. This reaction may be used to oxidate the organic impurities in the aqueous solutions. In the activated carbon - oxidant - organic impurities system most probably both the processes of sorption and catalytic oxidation of the organic compounds take place. In this paper the effectiveness of removing the crystal violet from the aqueous solution in the presence od various activated carbons and hydrogen peroxide was examined (Cd = 20 mg/dm3, CH2O2(1) = 375 mg/ dm3, CH2O2(2) = 3750 mg/ dm3, mac = 0.5 g, t = 160 min). In the research the commercial activated carbon WDex, activated carbon WDex oxidated with hydrogen peroxide and activated carbon WDex saturated with crystal violet and regenerated with Fe2+/H2O2 i Fe2+/CaO2 (sorption - oxidation of adsorbed compounds) were used. It has been observed that in specified conditions the effectiveness of removing the dye in the presence of carbon and oxidant is greater (72 mg/g) than the sorptive abilities of the activated carbons (34 mg/g). It has been also concluded that the efficiency of the process depends on the type of the activated carbon used, the amount of the hydrogen peroxide and the method of carrying out the process. It has been also show that the effectiveness of removing crystal violet from the aqueous solution is greater when the process is carried out in the activated carbon - crystal violet - hydrogen peroxide system than in case of removing the dye by the sorption on activated carbon - regeneration of the activated carbon - subsequent regeneration (56 mg/g). The results of the research confirm both the sorptive and catalytic properties of the activated carbons in the analyzed process.
Źródło:
Proceedings of ECOpole; 2010, 4, 2; 335-342
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie połączonych procesów sorpcji i utleniania do usuwania p-chlorofenolu ze środowiska wodnego
Application of combined processes of sorption and oxidation for the removal of p-chlorophenol from the aqueous environment
Autorzy:
Dąbek, L.
Ozimina, E.
Picheta-Oleś, A.
Powiązania:
https://bibliotekanauki.pl/articles/125983.pdf
Data publikacji:
2012
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
węgiel aktywny
utlenianie
sorpcja
nadtlenek wodoru
p-chlorofenol
activated carbon
oxidation
sorption
hydrogen peroxide
p-chlorophenol
Opis:
W prezentowanej pracy prowadzono badania nad skutecznością usuwania p-chlorofenolu z roztworu wodnego jako symulację eliminowania ze środowiska łatwo rozpuszczalnych związków chlorowcoorganicznych, stanowiących jedno z groźniejszych zanieczyszczeń środowiska. Jako metody usuwania wybrano sorpcję, utlenianie nadtlenkiem wodoru i odczynnikiem Fentona oraz symultanicznie realizowany proces sorpcji i utlenienia nadtlenkiem wodoru. Wykazano, że nadtlenek wodoru nie utlenia p-chlorofenolu, natomiast w reakcji Fentona następuje natychmiastowy rozkład tej substancji. Stwierdzono, że sorpcja na węglu aktywnym jest skutecznym sposobem usuwania p-chlorofenolu z roztworu wodnego. Ponadto, zużyty węgiel aktywny można z powodzeniem zregenerować poprzez utlenienie zaadsorbowanej substancji nadtlenkiem wodoru lub odczynnikiem Fentona i ponownie wykorzystać jako sorbent. Jednakże proces regeneracji łączy się ze znaczną stratą węgla aktywnego na skutek jego utlenienia. Znacznie skuteczniejszym rozwiązaniem jest usuwanie p-chlorofenolu z roztworu wodnego poprzez utlenienie odczynnikiem Fentona lub nadtlenkiem wodoru w obecności węgla aktywnego. W tych warunkach ma miejsce tak proces sorpcji, jak również utlenienia substancji organicznych, zarówno w roztworze wodnym, jak i zaadsorbowanych na węglu aktywnym, co równocześnie skutkuje jego regeneracją i umożliwia ponowne wykorzystanie.
In this paper the effectiveness of removing p-chlorophenol from the aqueous solution as a simulation of removing highly soluble chloroorganic compounds (being one of the most dangerous pollutants) has been examined. The following processes have been selected as the removal methods: sorption, oxidation with hydrogen peroxide and Fenton reagent as well as simultaneous sorption and oxidation with hydrogen peroxide. It has been proven that the hydrogen peroxide does not oxidate p-chlorophenol, while in the Fenton reaction an immediate decomposition of this substance takes place. It has been established that the sorption of activated carbon is an effective method of removing p-chlorophenol from an aqueous solution. Additionally, the used activated carbon may be successfully regenerated by oxidating the adsorbed substance with hydrogen peroxide or Fenton reagent and used again as a sorbent. However, the discussed process leads to a substantial loss of activated carbon as a result of its oxidation. The more effective solution is removing p-chlorophenol from the aqueous solution by oxidation with Fenton reagent or hydrogen peroxide in the presence of activated carbon. In such conditions both sorption and oxidation of organic substances present in the aqueous solution and adsorbed on the activated carbon take place, which also leads to the regeneration of the activated carbon and allows for its further use.
Źródło:
Proceedings of ECOpole; 2012, 6, 1; 343-348
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying the Combined Processes of Sorption and Oxidation to Remove Organic Compounds from an Aqueous Environment Using the Example of p-Chlorophenol
Zastosowanie połączonych procesów sorpcji i utleniania do usuwania związków organicznych ze środowiska wodnego na przykładzie p-chlorofenolu
Autorzy:
Dąbek, L.
Ozimina, E.
Picheta-Oleś, A.
Powiązania:
https://bibliotekanauki.pl/articles/388010.pdf
Data publikacji:
2012
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
węgiel aktywny
utlenianie
sorpcja
nadtlenek wodoru
p-chlorofenol
activated carbon
oxidation
sorption
hydrogen peroxide
p-chlorophenol
Opis:
The efficiency of the removal of p-chlorophenol from an aqueous solution was tested to simulate the elimination of highly-hazardous soluble chloro-organic compounds from the environment. The methods selected to remove this pollutant were the consecutive and simultaneous processes of sorption and oxidation utilizing hydrogen peroxide and Fenton’s reagent. Hydrogen peroxide was incapable of oxidizing p-chlorophenol, whereas in Fenton-driven oxidation the substance was decomposed immediately. Sorption on activated carbon proved to be an effective method for removing p-chlorophenol from an aqueous solution. Moreover, the p-chlorophenol-spent activated carbon was successfully regenerated by oxidation of the adsorbed substance applying hydrogen peroxide or Fenton’s reagent and then reused as a sorbent. However, the regeneration process involved a considerable loss of mass of the activated carbon due to oxidation. A more effective method of removal of p-chlorophenol from an aqueous solution was oxidation with Fenton’s reagent or hydrogen peroxide in the presence of activated carbon. Under such conditions, the processes of sorption and oxidation of the organic substance took place both in an aqueous solution and on the surface of the activated carbon, which contributed to the regeneration and reuse of the carbon.
W prezentowanej pracy prowadzono badania nad skutecznością usuwania p-chlorofenolu z roztworu wodnego, jako symulację eliminowania ze środowiska łatwo rozpuszczalnych związków chlorowcoorganicznych stanowiących jedno z groźniejszych zanieczyszczeń środowiska. Jako metody usuwania wybrano sorpcję, utlenianie nadtlenkiem wodoru i odczynnikiem Fentona oraz symultanicznie realizowany proces sorpcji i utleniania nadtlenkiem wodoru. Wykazano, że nadtlenek wodoru nie utlenia p-chlorofenolu, natomiast w reakcji Fentona następuje natychmiastowy rozkład tej substancji. Stwierdzono, że sorpcja na węglu aktywnym jest skutecznym sposobem usuwania p-chlorofenolu z roztworu wodnego. Ponadto, zużyty węgiel aktywny można z powodzeniem zregenerować poprzez utlenienie zaadsorbowanej substancji nadtlenkiem wodoru lub odczynnikiem Fentona i ponownie wykorzystać jako sorbent. Jednakże proces regeneracji łączy się ze znaczną stratą węgla aktywnego na skutek jego utlenienia. Znacznie skuteczniejszym rozwiązaniem jest usuwanie p-chlorofenolu z roztworu wodnego poprzez utlenienie odczynnikiem Fentona lub nadtlenkiem wodoru w obecności węgla aktywnego. W tych warunkach ma miejsce tak proces sorpcji, jak i utleniania substancji organicznych zarówno w roztworze wodnym, jak i zaadsorbowanych na węglu aktywnym, co równocześnie skutkuje jego regeneracją i umożliwia ponowne wykorzystanie.
Źródło:
Ecological Chemistry and Engineering. A; 2012, 19, 3; 275-286
1898-6188
2084-4530
Pojawia się w:
Ecological Chemistry and Engineering. A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie węgla aktywnego i nadtlenku wodoru w oczyszczaniu ścieków przemysłowych
The use of activated carbon and hydrogen peroxide in wastewater treatment
Autorzy:
Dąbek, L.
Ozimina, E.
Picheta-Oleś, A.
Powiązania:
https://bibliotekanauki.pl/articles/296913.pdf
Data publikacji:
2011
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
węgiel aktywny
sorpcja
regeneracja
utlenianie
nadtlenek wodoru
activated carbon
sorption
regeneration
oxidation
hydrogen peroxide
Opis:
Oczyszczanie ścieków przemysłowych wymaga stosowania różnych metod, w tym procesów sorpcji i utlenienia. Każdy z tych procesów ma swoje zalety i ograniczenia. Konsekwencją stosowania sorpcji (najczęściej z wykorzystaniem węgli aktywnych) jest problem zagospodarowania zużytych sorbentów, a proces utleniania wymaga wprowadzania znacznych ilości utleniaczy. Alternatywą może być połączenie obu tych procesów, realizowane jako: sorpcja, a następnie utlenienie zaadsorbowanych substancji, co skutkuje ich regeneracją i możliwością ponownego wykorzystania, lub jako sorpcja i utlenianie realizowane symultanicznie. W prezentowanej pracy prowadzono badania nad skutecznością usuwania p-chlorofenolu (jako substancji organicznej często występującej w ściekach przemysłowych) z wykorzystaniem węgla aktywnego i utleniaczy. Jako utleniacze zastosowano nadtlenek wodoru oraz odczynnik Fentona wykorzystywane w metodach pogłębionego utleniania (AOP). W tym przypadku rozkład związków organicznych zachodzi na skutek działania powstających w środowisku reakcji rodników hydroksylowych. Wykazano, że nadtlenek wodoru nie utlenia p-chlorofenolu, natomiast w reakcji Fentona następuje natychmiastowy rozkład tej substancji. Jednocześnie wykazano, że wybrany do badań węgiel aktywny WD extra charakteryzuje się dużą zdolnością sorpcyjną względem p-chlorofenolu, wynoszącą 150 mg/g. Nasycony p-chlorofenolem węgiel aktywny poddano regeneracji poprzez utlenienie zaadsorbowanej substancji nadtlenkiem wodoru i odczynnikiem Fentona. Stwierdzono, że węgiel aktywny po regeneracji wykazuje zdolności sorpcyjne zbliżone do węgla świeżego. Procesowi regeneracji towarzyszy jednak znaczny ubytek masy węgla aktywnego, szczególnie na skutek działania odczynnika Fentona (ok. 15%). Jednocześnie prowadzono badania nad usuwaniem p-chlorofenolu z roztworu wodnego w symultanicznym procesie sorpcji i utlenienia. Zaobserwowano, że w pierwszym etapie reakcji zachodzi proces utlenienia, obejmujący jednak nie tylko rozkład p-chlorofenolu, ale również węgiel aktywny, na co wskazuje znaczny ubytek masy. Wraz z upływem czasu reakcji udział sorpcji wzrasta.
Industrial wastewater treatment requires the application of various methods including sorption and oxidation. Each of these processes has its advantages and limitations. The main consequence of sorption (usually with the use of activated carbon) is the problem of utilizing the used sorbents while oxidation requires introducing large amounts of oxidants. Alternatively, the combination of both these processes can be used, either carried out in the following sequence: sorption and then oxidation of adsorbed compounds, which results in their regeneration and possibility of their further use or as sorption and oxidation carried out simultaneously. In this paper the study on the effectiveness of p-chlorophenol (as an organic compound usually present in wastewaters) removal with the use of activated carbon and oxidants has been carried out. Hydrogen peroxide and Fenton's agent used in the advanced oxidation processes (AOP) were applied as oxidants. In such case the decomposition of organic compounds takes place due to the effect of hydroxyl radicals formed in the reaction environment. It has been shown that the hydrogen peroxide does not oxidate p-cholorphenol, while in the Fenton reaction immediate decomposition of this compound takes place. At the same time, it has been proven that the WD extra activated carbon selected for the studies has high sorptive abilities towards p-chlorophenol amounting to 150 mg/g. Activated carbon saturated with p-chlorophenol has been regenerated by oxidation of the adsorbed compound with hydrogen peroxide and Fenton's agent. It has been observed that after the regeneration the activated carbon shows sorptive abilities similar to the fresh carbon. However, the regeneration process has been accompanied with considerable activated carbon mass loss, in particular due to the effect of Fenton's agent (approximately 15%). At the same time studies on the p-chlorophenol removal from the aqueous solution in the simultaneous process of sorption and oxidation has been carried out. It has been observed that in the first phase of the reaction oxidation process takes place, involving p-chlorophenol decomposition as well as activated carbon decomposition, which is implied by the considerable mass loss. With time, sorption process starts to dominate. It has been concluded that irrespective of the method chosen (sorption and then oxidation of adsorbed compounds or simultaneous sorption and oxidation) the p-chlorophenol removal effectiveness was comparable.
Źródło:
Inżynieria i Ochrona Środowiska; 2011, 14, 2; 181-189
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies