Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Grzenda, Wioletta" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
The Significance of Prior Information in Bayesian Parametric Survival Models
Znaczenie informacji a priori w bayesowskich parametrycznych modelach przeżycia
Autorzy:
Grzenda, Wioletta
Powiązania:
https://bibliotekanauki.pl/articles/905774.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
survival parametric models
Bayesian inference
prior distribution
MCMC method
unemployment
Opis:
The Bayesian approach gives the possibility of using in the research additional information that is external to the sample. The primary objective of this paper is to analyse the impact of the prior information on the posterior distribution in Bayesian parametric survival models. In this work the exponential models and Weibull models with different prior distributions have been estimated and compared. The aim of this research is to investigate the determinants of unemployment duration. The models have been estimated using Markov chain Monte Carlo method with Gibbs sampling.
W pracy przedstawiono parametryczne modele przeżycia w ujęciu bayesowskim. Podejście bayesowskie wymaga zadania rozkładów a priori dla szacowanych parametrów modelu. Rozkład a priori parametru jest rozkładem prawdopodobieństwa, który wyraża całą wiedzę badacza o szacowanym parametrze przed sprawdzeniem aktualnych danych. W literaturze przedmiotu często spotyka się nieinformacyjne rozkłady a priori, które wyrażają brak wstępnej wiedzy badacza o szacowanych parametrach modelu. W celu pokazania znaczenia informacji a priori oraz jej wpływu na rozkład a posteriori oszacowano kilka parametrycznych modeli przeżycia przy różnych rozkładach a priori. Przedmiot badań stanowią determinanty długości czasu pozostawania bez pracy.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian Exponential Survival Model in the Analysis of Unemployment Duration Determinants
Bayesowski wykładniczy model przeżycia w analizie determinant długości czasu pozostawania bez pracy
Autorzy:
Grzenda, Wioletta
Powiązania:
https://bibliotekanauki.pl/articles/906856.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
unemployment
survival exponential model
Bayesian inference
MCMC method
Opis:
The primary objective of the work is to identify demographic and socio-economic factors influencing the unemployment duration in the recent period in Poland. Different approaches to the problem have been applied. In this paper we have used a survival parametric model in Bayesian approach. The following determinants have been concerned in the model: sex, marital status, education level, information about continuing an education, region of Poland, and age of respondent. The empirical analysis is based on “Household budgets in 2008” survey of Central Statistical Office and indicates the main factors influencing unemployment duration.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2012, 269
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie determinant pozostawania bez pracy osób młodych z wykorzystaniem semiparametrycznego modelu Coxa
An analysis of unemployment duration determinants among young people using semiparametric Cox model
Autorzy:
Grzenda, Wioletta
Powiązania:
https://bibliotekanauki.pl/articles/422828.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
bezrobocie
semiparametryczny model Coxa
wnioskowanie bayesowskie
metody MCMC
unemployment
semiparametric Cox model
Bayesian inference
Markov chain Monte Carlo method
Opis:
Obecnie wśród osób rozpoczynających karierę zawodową obserwuje się szczególnie dużą wartość wskaźnika bezrobocia. Celem niniejszego opracowania jest identyfikacja czynników demograficznych oraz społeczno-ekonomicznych wpływających na długość czasu pozostawania bez pracy tych osób. W badaniu wykorzystano m.in. bayesowski semiparametryczny model Coxa dla danych indywidualnych. Wykorzystanie modelu przeżycia daje możliwość analizy jednoczesnego wpływu wybranych zmiennych objaśniających na czas pozostawania bez pracy. Natomiast podejście bayesowskie umożliwia uwzględnienie w badaniu, za pomocą rozkładów a priori, dodatkowej informacji spoza próby. Estymację modeli przeprowadzono z wykorzystaniem metod Monte Carlo opartych na łańcuchach Markowa, a dokładniej algorytmu ARMS.
High unemployment rates are observed among people beginning job careers nowadays. The aim of the work is to identify demographic and socio-economic factors influencing the unemployment duration in this age group. In this research, Bayesian semiparametric Cox model for individual data has been used. The advantage of survival model is the possibility of the analysis of the impact of selected independent variables on unemployment duration. The Bayesian approach with a priori distribution makes the use of out of the sample knowledge possible. The model has been estimated using Markov chain Monte Carlo method with ARMS algorithm.
Źródło:
Przegląd Statystyczny; 2012, 59, numer specjalny 1; 123-139
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies