Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "learning support" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Zastosowanie maszyny wektorów nośnych w sterowaniu sygnalizacją świetlną
Application of support vector machine in a traffic lights control
Autorzy:
Całuch, Artur
Cieślikowski, Adam
Plechawska-Wójcik, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/98085.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
uczenie maszynowe
symulator ruchu ulicznego
maszyna wektorów nośnych
machine learning
traffic simulator
support vector machine
Opis:
Niniejszy artykuł przedstawia proces dostosowania parametrów modelu maszyny wektorów nośnych, który posłuży do zbadania wpływu wartości parametru długości cyklu sygnalizacji świetlnej na jakość ruchu. Badania przeprowadzono z użyciem danych pozyskanych w trakcie przeprowadzonych symulacji w autorskim symulatorze ruchu ulicznego. W artykule przedstawiono i omówiono wyniki poszukiwania optymalnej wartości parametru długości cyklu sygnalizacji świetlnej.
This article presents the process of adapting support vector machine model’s parameters used for studying the effect of traffic light cycle length parameter’s value on traffic quality. The survey is carried out using data collected during running simulations in author’s traffic simulator. The article shows results of searching for optimum traffic light cycle length parameter’s value.
Źródło:
Journal of Computer Sciences Institute; 2020, 14; 37-42
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multiple-instance learning with pairwise instance similarity
Autorzy:
Yuan, L.
Liu, J.
Tang, X.
Powiązania:
https://bibliotekanauki.pl/articles/330821.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiple instance learning
instance selection
similarity
support vector machine (SVM)
uczenie maszynowe
podobieństwo
metoda wektorów wspomagających
Opis:
Multiple-Instance Learning (MIL) has attracted much attention of the machine learning community in recent years and many real-world applications have been successfully formulated as MIL problems. Over the past few years, several Instance Selection-based MIL (ISMIL) algorithms have been presented by using the concept of the embedding space. Although they delivered very promising performance, they often require long computation times for instance selection, leading to a low efficiency of the whole learning process. In this paper, we propose a simple and efficient ISMIL algorithm based on the similarity of pairwise instances within a bag. The basic idea is selecting from every training bag a pair of the most similar instances as instance prototypes and then mapping training bags into the embedding space that is constructed from all the instance prototypes. Thus, the MIL problem can be solved with the standard supervised learning techniques, such as support vector machines. Experiments show that the proposed algorithm is more efficient than its competitors and highly comparable with them in terms of classification accuracy. Moreover, the testing of noise sensitivity demonstrates that our MIL algorithm is very robust to labeling noise.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 567-577
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Proposition of subjective quality measure for exert rules
Autorzy:
Woźniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/333195.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
uczenie maszynowe
zdobywanie wiedzy
medyczne systemy wspomagania diagnostyki
machine learning
knowledge acquisition
medical diagnosis support systems
Opis:
Paper deals with the knowledge acquisition process. Different experts formulate the rules for decision support systems. We assume they have different knowledge about the problem and therefore obtained rules have different qualities. We will formulate the proposition of the confidence measure and its application to the decision process. We will propose how calculate the value of measure under consideration for typical statistical learning process. On the base on the proposed measure of the knowledge quality we propose the procedure of the contradictions elimination for the set of logical rules.
Źródło:
Journal of Medical Informatics & Technologies; 2003, 5; MI115-119
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficient heart disease diagnosis based on twin support vector machine
Autorzy:
Brik, Youcef
Djerioui, Mohamed
Attallah, Bilal
Powiązania:
https://bibliotekanauki.pl/articles/1840868.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
heart diseases
medical data
diagnostic
machine learning
twin support vector machines
choroba serca
diagnostyka
uczenie maszynowe
Opis:
Heart disease is the leading cause of death in the world according to the World Health Organization (WHO). Researchers are more interested in using machine learning techniques to help medical staff diagnose or detect heart disease early. In this paper, we propose an efficient medical decision support system based on twin support vector machines (Twin-SVM) for heart disease diagnosing with binary target (i.e. presence or absence of disease). Unlike conventional support vector machines (SVM) that finds only one optimal hyperplane for separating the data points of first class from those of second class, which causes inaccurate decision, Twin-SVM finds two non-parallel hyper-planes so that each one is closer to the first class and is as far from the second class as possible. Our experiments are conducted on real heart disease dataset and many evaluation metrics have been considered to evaluate the performance of the proposed method. Furthermore, a comparison between the proposed method and several well-known classifiers as well as the state-of-the-art methods has been performed. The obtained results proved that our proposed method based on Twin-SVM technique gives promising performances better than the state-of-the-art. This improvement can seriously reduce time, materials, and labor in healthcare services while increasing the final decision accuracy.
Źródło:
Diagnostyka; 2021, 22, 3; 3-11
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
Skin lesion features analysis for malignant melanoma classification
Autorzy:
Mikołajczyk, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268540.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytm ewolucyjny
uczenie maszynowe
sieci neuronowe
systemy wspomagania decyzji
evolutionary algorithm
neural networks
decision support system
machine learning
Opis:
Pomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak najlepszej dokładności klasyfikacji znamion skórnych. Algorytm zwraca optymalny zestaw cech opisujących obraz dermatoskopowy wraz z proponowaną architekturą sieci neuronowej. Uzyskano dokładność równą 85,83%, swoistość równą 79,07% oraz czułość równą 92,60%.
Despite the dynamic development of machine learning methods, automatic analysis of skin lesions is still open issue. The following article proposes the use of an evolutionary algorithm to design, train, and to test a whole population of classifiers (artificial neural networks) and to iteratively improve them in each subsequent population, in order to achieve the best possible accuracy in the classification of skin lesions task. The algorithm returns an optimal set of features describing the dermatoscopic image together with the proposed architecture of the neural network. High classification results were obtained, in particular: accuracy equal to 85.83%, specificity 79.07% and sensitivity 92.60%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 67-70
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data
Porównanie metod uczenia maszynowego do prognozowania spływu w zlewniach górskich na podstawie ograniczonych danych
Autorzy:
Adamowski, J.
Prasher, S. O.
Powiązania:
https://bibliotekanauki.pl/articles/292443.pdf
Data publikacji:
2012
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
Himalaje
prognozowanie spływu
regresja wektora wsparcia
sieci falkowe
uczenie maszynowe
Himalayas
machine learning
runoff forecasting
support vector regression
wavelet networks
Opis:
Runoff forecasting in mountainous regions with processed based models is often difficult and inaccurate due to the complexity of the rainfall-runoff relationships and difficulties involved in obtaining the required data. Machine learning models offer an alternative for runoff forecasting in these regions. This paper explores and compares two machine learning methods, support vector regression (SVR) and wavelet networks (WN) for daily runoff forecasting in the mountainous Sianji watershed located in the Himalayan region of India. The models were based on runoff, antecedent precipitation index, rainfall, and day of the year data collected over the three year period from July 1, 2001 and June 30, 2004. It was found that both the methods provided accurate results, with the best WN model slightly outperforming the best SVR model in accuracy. Both the WN and SVR methods should be tested in other mountainous watershed with limited data to further assess their suitability in forecasting.
Prognozowanie spływu z obszarów górskich z użyciem programowanych modeli jest często trudne i niedokładne z powodu złożonych zależności między opadem a spływem i problemów związanych z pozyskaniem niezbędnych danych. Modele uczenia maszynowego stwarzają alternatywę dla prognozowania spływu z takich regionów. W pracy analizowano i porównano dwie metody uczenia maszynowego - metodę regresji wektorów nośnych (SVR) i sieci falkowych (WN) do dobowego prognozowania spływu w górskiej zlewni Sianji, usytuowanej w indyjskiej części Himalajów. Modele opracowano na podstawie danych o spływie, wskaźniku poprzednich opadów, opadzie i kolejnym dniu roku za trzyletni okres od 1 lipca 2001 r. do 30 czerwca 2004 r. Stwierdzono, że obie metody zapewniają dokładne wyniki, przy czym najlepszy model WN nieco przewyższa najlepszy model SVR pod względem dokładności. Obie metody powinny być testowane w innych zlewniach górskich o ograniczonej liczbie danych, aby lepiej ocenić ich przydatność do prognozowania.
Źródło:
Journal of Water and Land Development; 2012, no. 17 [VII-XII]; 89-97
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Handling class label noise in medical pattern classification systems
Autorzy:
Sáez, J. A.
Krawczyk, B.
Woźniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/333813.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
machine learning
pattern classification
class noise
noise filtering
decision support systems
uczenie maszynowe
klasyfikacja wzorców
filtracja zakłóceń
filtracja szumów
systemy wspomagania decyzji
Opis:
Pattern classification systems play an important role in medical decision support. They allow to automatize and speed-up the data analysis process, while being able to handle complex and massive amounts of information and discover new knowledge. However, their quality is based on the classification models built, which require a training set. In supervised classification we must supply class labels to each training sample, which is usually done by domain experts or some automatic systems. As both of these approaches cannot be deemed as flawless, there is a chance that the dataset is corrupted by class noise. In such a situation, class labels are wrongly assigned to objects, which may negatively affect the classifier training process and impair the classification performance. In this contribution, we analyze the usefulness of existing tools to deal with class noise, known as noise filtering methods, in the context of medical pattern classification. The experiments carried out on several real-world medical datasets prove the importance of noise filtering as a pre-processing step and its beneficial influence on the obtained classification accuracy.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 123-130
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementation of digital twin and support vector machine in structural health monitoring of bridges
Autorzy:
Al-Hijazeen, Asseel Za'al Ode
Fawad, Muhammad
Gerges, Michael
Koris, Kálmán
Salamak, Marek
Powiązania:
https://bibliotekanauki.pl/articles/27312162.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
monitorowanie stanu konstrukcji
most
uszkodzenie
bliźniak cyfrowy
uczenie maszynowe
maszyna wektorów wsparcia
structural health monitoring
bridge
damage
digital twin
machine learning
support vector machine
Opis:
Structural health monitoring (SHM) of bridges is constantly upgraded by researchers and bridge engineers as it directly deals with bridge performance and its safety over a certain time period. This article addresses some issues in the traditional SHM systems and the reason for moving towards an automated monitoring system. In order to automate the bridge assessment and monitoring process, a mechanism for the linkage of Digital Twins (DT) and Machine Learning (ML), namely the Support Vector Machine (SVM) algorithm, is discussed in detail. The basis of this mechanism lies in the collection of data from the real bridge using sensors and is providing the basis for the establishment and calibration of the digital twin. Then, data analysis and decision-making processes are to be carried out through regression-based ML algorithms. So, in this study, both ML brain and a DT model are merged to support the decision-making of the bridge management system and predict or even prevent further damage or collapse of the bridge. In this way, the SHM system cannot only be automated but calibrated from time to time to ensure the safety of the bridge against the associated damages.
Źródło:
Archives of Civil Engineering; 2023, 69, 3; 31--47
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine-Learning Methods for Assessing Dynamic Resistance of Existing Bridge Structures Subjected to Mining Tremors
Metody uczenia maszynowego w ocenie odporności dynamicznej istniejących obiektów mostowych poddanych wstrząsom górniczym
Autorzy:
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/385657.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dynamika budowli
uczenie maszynowe
sztuczne sieci neuronowe
SVM
wstrząsy górnicze
odporność dynamiczna
mosty
dynamics of structures
machine learning
Artificial Neural Networks
SVM Support Vector Machine
mining tremors
dynamic resistance
bridges
Opis:
W pracy przedstawiono wyniki badań, których celem było utworzenie modelu pozwalającego na określenie odporności istniejących obiektów mostowych na wpływy wstrząsów górniczych. Podstawą do analiz była utworzona przez autora baza danych o odporności dynamicznej żelbetowych obiektów mostowych poddanych wymuszeniu sejsmicznemu charakterystycznemu dla terenu Legnicko-Głogowskiego Okręgu Miedziowego (LGOM). Odporność dynamiczna każdego obiektu w bazie danych została wyrażona w postaci granicznych wartości przyspieszeń drgań gruntu, jakie dana konstrukcja może przejąć bez zagrożenia bezpieczeństwa. Badania przeprowadzono, wykorzystując metodę Support Vector Machine (SVM) w ujęciu regresyjnym (SVR – Support Vector Regression) oraz sztuczne sieci neuronowe (ANN – Artificial Neural Network). Utworzone w ten sposób modele porównano w aspekcie jakości predykcji oraz uogólniania nabytej wiedzy. Pozwoliło to na wytypowanie metody najbardziej efektywnej pod względem oceny odporności dynamicznej istniejących obiektów mostów.
This paper demonstrates the results of research studies aimed at creating a model that allows to determine the resistance of existing bridge structures to the impact of mining tremors. A database (created by the author of this article) of the dynamic resistance of reinforced concrete bridge structures subjected to seismic excitations commonly occurring in the Legnica-Głogów Copper District (LGOM) formed the basis for the analysis. The dynamic resistance of each structure contained in the database was expressed as the limit values of the acceleration of ground vibrations that may be carried by a given structure without compromising its safety. The study was carried out using the Support Vector Machine (SVM) method in a Support Vector Regression (SVR) approach as well as an Artificial Neural Network (ANN). The models were compared in terms of the quality of the predictions and generalization of the acquired knowledge. This allows to select the most-effective method in evaluating the dynamic resistance of existing bridge structures.
Źródło:
Geomatics and Environmental Engineering; 2018, 12, 1; 109-120
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapping of impervious surfaces with the use of remote sensing imagery: Support Vector Machines classification and GIS-based approach
Wizualizacja powierzchni nieprzepuszczalnych z wykorzystaniem zdjęć teledetekcyjnych: klasyfikacja support vector machines i podejście oparte na GIS
Autorzy:
Sobieraj, Janusz
Fernández Marín, Marcos
Metelski, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/27312146.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
klasyfikacja
powierzchnia nieprzepuszczalna
maszyna wektorów nośnych
teledetekcja
system informacji geograficznej
użytkowanie gruntów pokrycie gruntów
ArcGIS
uczenie maszynowe
classification
impervious surface
support vector machine
remote sensing
geographic information system
land use land cover
machine learning
Opis:
This study focuses on the problem of mapping impervious surfaces in urban areas and aims to use remote sensing data and orthophotos to accurately classify and map these surfaces. Impervious surface indices and green space assessments are widely used in land use and urban planning to evaluate the urban environment. Local governments also rely on impervious surface mapping to calculate stormwater fees and effectively manage stormwater runoff. However, accurately determining the size of impervious surfaces is a significant challenge. This study proposes the use of the Support Vector Machines (SVM) method, a pattern recognition approach that is increasingly used in solving engineering problems, to classify impervious surfaces. The research results demonstrate the effectiveness of the SVM method in accurately estimating impervious surfaces, as evidenced by a high overall accuracy of over 90% (indicated by the Cohen’s Kappa coefficient). A case study of the “Parkowo-Leśne” housing estate in Warsaw, which covers an area of 200,000 m², shows the successful application of the method. In practice, the remote sensing imagery and SVM method allowed accurate calculation of the area of the surface classes studied. The permeable surface represented about 67.4% of the total complex and the impervious surface corresponded to the remaining 32.6%. These results have implications for stormwater management, pollutant control, flood control, emergency management, and the establishment of stormwater fees for individual properties. The use of remote sensing data and the SVM method provides a valuable approach for mapping impervious surfaces and improving urban land use management.
Niniejsze badanie koncentruje się na problemie wyznaczania powierzchni nieprzepuszczalnych na obszarach miejskich i ma na celu wykorzystanie danych teledetekcyjnych i ortofotomap do dokładnej klasyfikacji i wizualizacji tych powierzchni. Wskaźniki powierzchni nieprzepuszczalnych i oceny terenów zielonych są szeroko stosowane w planowaniu przestrzennym i urbanistycznym do oceny środowiska miejskiego. Władze lokalne polegają również na oszacowaniu wielkości powierzchni nieprzepuszczalnych w celu obliczania opłat za wodę deszczową i skutecznego zarządzania odpływem wody deszczowej. Jednak dokładne określenie wielkości nieprzepuszczalnych powierzchni jest poważnym wyzwaniem. W niniejszym badaniu zaproponowano wykorzystanie metody Support Vector Machines (SVM), podejścia opartego na rozpoznawaniu wzorców, które jest coraz częściej stosowane w rozwiązywaniu problemów inżynieryjnych, do klasyfikacji powierzchni nieprzepuszczalnych. Wyniki badań pokazują skuteczność metody SVM w dokładnym szacowaniu powierzchni nieprzepuszczalnych, o czym świadczy wysoka ogólna precyzja wynosząca ponad 90% ( na co wskazuje współczynnik Kappa Cohena). Studium przypadku osiedla „Parkowo-Leśne” w Warszawie o powierzchni 200 000 m² pokazuje skuteczne zastosowanie metody. Wyniki wskazują, że powierzchnie przepuszczalne stanowiły około 67,4% całego kompleksu, podczas gdy powierzchnie nieprzepuszczalne stanowiły pozostałe 32,6%. Wyniki te mogą mieć wpływ na zarządzanie wodami opadowymi, kontrolę zanieczyszczeń, zapobieganie powodziom, zarządzanie kryzysowe i ustalanie opłat za wodę opadową dla poszczególnych nieruchomości. Wykorzystanie danych teledetekcyjnych i metody SVM zapewnia cenne podejście do wizualizacji powierzchni nieprzepuszczalnych i poprawy zarządzania użytkowaniem gruntów miejskich.
Źródło:
Archives of Civil Engineering; 2023, 69, 3; 129--146
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
AI-supported reasoning in physiotherapy
Wnioskowanie w fizjoterapii wspierane sztuczną inteligencją
Autorzy:
Mikołajewski, Dariusz
Mikołajewska, Emilia
Powiązania:
https://bibliotekanauki.pl/articles/41203435.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
artificial intelligence
machine learning
clinical reasoning
clinical decision support system
interview
musculoskeletal pain disorders
physiotherapy
usability
recommender system
self-management
mHealth
sztuczna inteligencja
uczenie maszynowe
wnioskowanie kliniczne
system wspomagania decyzji klinicznych
wywiad
zaburzenia bólowe układu mięśniowo-szkieletowego
fizjoterapia
użyteczność
system rekomendacji
samokontrola
mZdrowie
Opis:
Artificial intelligence (AI)-based clinical reasoning support systems in physiotherapy, and in particular data-driven (machine learning) systems, can be useful in making and reviewing decisions regarding functional diagnosis and formulating/maintaining/modifying a rehabilitation programme. The aim of this article is to explore the extent to which the opportunities offered by AI-based systems for clinical reasoning in physiotherapy have been exploited and where the potential for their further stimulated development lies.
Systemy wspomagania wnioskowania klinicznego w fizjoterapii oparte na sztucznej inteligencji, a w szczególności na danych (uczenie maszynowe), mogą być przydatne w podejmowaniu i weryfikacji decyzji dotyczących diagnostyki funkcjonalnej ora formułowania/utrzymywania/modyfikowania programu rehabilitacji. Celem niniejszego artykułu jest zbadanie, w jakim stopniu możliwości oferowane przez systemy oparte na sztucznej inteligencji w zakresie rozumowania klinicznego w fizjoterapii zostały wykorzystane i gdzie leży potencjał ich dalszego stymulowanego rozwoju.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2024, 16, 2; 21-27
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies