Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "XGBoost" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Comprehensive machine learning and deep learning approaches for Parkinsons disease classification and severity assessment
Kompleksowe metody uczenia maszynowego i uczenia głębokiego do klasyfikacji choroby Parkinsona i oceny jej nasilenia
Autorzy:
Majdoubi, Oumaima
Benba, Achraf
Hammouch, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/27315457.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
Parkinson's disease
severity assessment
machine learning
XGBoost
Gated Recurrent Unit (GRU)
comparative analysis
choroba Parkinsona
ocena ciężkości
uczenie maszynowe
analiza porównawcza
Opis:
In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity assessment.
W tym badaniu naszym celem było przyjęcie kompleksowego podejścia do kategoryzacji i oceny ciężkości choroby Parkinsona poprzez wykorzystanie technik zarówno uczenia maszynowego, jak i głębokiego uczenia. Dokładnie oceniliśmy skuteczność różnych modeli, w tym XGBoost, Random Forest, Multi-Layer Perceptron (MLP) i Recurrent Neural Network (RNN), wykorzystując wskaźniki klasyfikacji. Wygenerowaliśmy szczegółowe raporty, aby ułatwić kompleksową analizę porównawczą tych modeli. Warto zauważyć, że XGBoost wykazał najwyższą precyzję na poziomie 97,4%. Ponadto poszliśmy o krok dalej, opracowując model Gated Recurrent Unit (GRU) w celu połączenia przewidywań z alternatywnych modeli. Oceniliśmy jego zdolność do przewidywania nasilenia dolegliwości. Aby określić ilościowo poziomy dokładności modeli w klasyfikacji chorób, obliczyliśmy wartości procentowe nasilenia. Ponadto stworzyliśmy krzywą charakterystyki operacyjnej odbiornika (ROC) dla modelu GRU, upraszczając ocenę jego zdolności do rozróżniania różnych poziomów nasilenia. To kompleksowe podejście przyczynia się do dokładniejszego i bardziej szczegółowego zrozumienia oceny ciężkości choroby Parkinsona.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 15--20
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of machine learning tools for seismic reservoir characterization study of porosity and saturation type
Zastosowanie metod uczenia maszynowego do charakterystyki porowatości i typu nasycenia przy użyciu atrybutów sejsmicznych
Autorzy:
Topór, Tomasz
Sowiżdżał, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2143329.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
machine learning
random forest
XGBoost
seismic attributes
reservoir properties prediction
uczenie maszynowe
lasy losowe
drzewa wzmocnione gradientowo
atrybuty sejsmiczne
predykcja własności zbiornikowych
Opis:
The application of machine learning (ML) tools and data-driven modeling became a standard approach for solving many problems in exploration geology and contributed to the discovery of new reservoirs. This study explores an application of machine learning ensemble methods – random forest (RF) and extreme gradient boosting (XGBoost) to derive porosity and saturation type (gas/water) in multihorizon sandstone formations from Miocene deposits of the Carpathian Foredeep. The training of ML algorithms was divided into two stages. First, the RF algorithm was used to compute porosity based on seismic attributes and well location coordinates. The obtained results were used as an extra feature to saturation type modeling using the XGBoost algorithm. The XGBoost was run with and without well location coordinates to evaluate the influence of the spatial information for the modeling performance. The hyperparameters for each model were tuned using the Bayesian optimization algorithm. To check the training models' robustness, 10-fold cross-validation was performed. The results were evaluated using standard metrics, for regression and classification, on training and testing sets. The residual mean standard error (RMSE) for porosity prediction with RF for training and testing was close to 0.053, providing no evidence of overfitting. Feature importance analysis revealed that the most influential variables for porosity prediction were spatial coordinates and seismic attributes sweetness. The results of XGBoost modeling (variant 1) demonstrated that the algorithm could accurately predict saturation type despite the class imbalance issue. The sensitivity for XGBoost on training and testing data was high and equaled 0.862 and 0.920, respectively. The XGBoost model relied on computed porosity and spatial coordinates. The obtained sensitivity results for both training and testing sets dropped significantly by about 10% when well location coordinates were removed (variant 2). In this case, the three most influential features were computed porosity, seismic amplitude contrast, and iso-frequency component (15 Hz) attribute. The obtained results were imported to Petrel software to present the spatial distribution of porosity and saturation type. The latter parameter was given with probability distribution, which allows for identifying potential target zones enriched in gas.
Metody uczenia maszynowego stanowią obecnie rutynowe narzędzie wykorzystywane przy rozwiązywaniu wielu problemów w geologii poszukiwawczej i przyczyniają się do odkrycia nowych złóż. Prezentowana praca pokazuje zastosowanie dwóch algorytmów uczenia maszynowego – lasów losowych (RF) i drzew wzmocnionych gradientowo (XGBoost) do wyznaczenia porowatości i typu nasycenia (gaz/woda) w formacjach piaskowców będących potencjalnymi horyzontami gazonośnymi w mioceńskich osadach zapadliska przedkarpackiego. Proces uczenia maszynowego został podzielony na dwa etapy. W pierwszym etapie użyto RF do obliczenia porowatości na podstawie danych pochodzących z atrybutów sejsmicznych oraz współrzędnych lokalizacji otworów. Uzyskane wyniki zostały wykorzystane jako dodatkowa cecha przy modelowaniu typu nasycenia z zastosowaniem algorytmu XGBoost. Modelowanie za pomocą XGBoost został przeprowadzone w dwóch wariantach – z wykorzystaniem lokalizacji otworów oraz bez nich w celu oceny wpływu informacji przestrzennych na wydajność modelowania. Proces strojenia hiperparametrów dla poszczególnych modeli został przeprowadzony z wykorzystaniem optymalizacji Bayesa. Wyniki procesu modelowania zostały ocenione na zbiorach treningowym i testowym przy użyciu standardowych metryk wykorzystywanych do rozwiązywania problemów regresyjnych i klasyfikacyjnych. Dodatkowo, aby wzmocnić wiarygodność modeli treningowych, przeprowadzona została 10-krotna kroswalidacja. Pierwiastek błędu średniokwadratowego (RMSE) dla wymodelowanej porowatości na zbiorach treningowym i testowym był bliski 0,053 co wskazuje na brak nadmiernego dopasowania modelu (ang. overfitting). Analiza istotności cech ujawniła, że zmienną najbardziej wpływającą na prognozowanie porowatości były współrzędne lokalizacji otworów oraz atrybut sejsmiczny sweetness. Wyniki modelowania XGBoost (wariant 1) wykazały, że algorytm jest w stanie dokładnie przewidywać typ nasycenia pomimo problemu z nierównowagą klas. Czułość wykrywania potencjalnych stref gazowych w przypadku modelu XGBoost była wysoka zarówno dla zbioru treningowego, jak i testowego (0,862 i 0,920). W swoich predykcjach model opierał się głównie na wyliczonej porowatości oraz współrzędnych otworów. Czułość dla uzyskanych wyników na zbiorze treningowym i testowym spadła o około 10%, gdy usunięto współrzędne lokalizacji otworów (wariant 2 XGBoost). W tym przypadku trzema najważniejszymi cechami były obliczona porowatość oraz atrybut sejsmiczny amplitude contrast i atrybut iso-frequency component (15 Hz). Uzyskane wyniki zostały zaimportowane do programu Petrel, aby przedstawić przestrzenny rozkład porowatości i typu nasycenia. Ten ostatni parametr został przedstawiony wraz z rozkładem prawdopodobieństwa, co dało wgląd w strefy o najwyższym potencjale gazowym.
Źródło:
Nafta-Gaz; 2022, 78, 3; 165-175
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble of feature extraction methods to improve the structural damage classification in a wind turbine foundation
Autorzy:
Leon-Medina, Jersson X.
Parés, Núria
Anaya, Maribel
Tibaduiza, Diego A.
Pozo, Francesc
Powiązania:
https://bibliotekanauki.pl/articles/27311417.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
structural health monitoring
wind turbine foundation
damage classification
machine learning
feature extraction
XGBoost
monitorowanie stanu konstrukcji
fundament turbiny wiatrowej
klasyfikacja uszkodzeń
uczenie maszynowe
ekstrakcja cech
Opis:
The condition monitoring of offshore wind power plants is an important topic that remains open. This monitoring aims to lower the maintenance cost of these plants. One of the main components of the wind power plant is the wind turbine foundation. This study describes a data-driven structural damage classification methodology applied in a wind turbine foundation. A vibration response was captured in the structure using an accelerometer network. After arranging the obtained data, a feature vector of 58 008 features was obtained. An ensemble approach of feature extraction methods was applied to obtain a new set of features. Principal Component Analysis (PCA) and Laplacian eigenmaps were used as dimensionality reduction methods, each one separately. The union of these new features is used to create a reduced feature matrix. The reduced feature matrix is used as input to train an Extreme Gradient Boosting (XGBoost) machine learning-based classification model. Four different damage scenarios were applied in the structure. Therefore, considering the healthy structure, there were 5 classes in total that were correctly classified. Five-fold cross validation is used to obtain a final classification accuracy. As a result, 100% of classification accuracy was obtained after applying the developed damage classification methodology in a wind-turbine offshore jacket-type foundation benchmark structure.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 3; art. no. e144606
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies