Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Machine learning algorithm" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
A survey on prediction of diabetes using classification algorithms
Autorzy:
Khanwalkar, A.
Soni, R.
Powiązania:
https://bibliotekanauki.pl/articles/1818807.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
diabetes
diabetes prediction
algorithm
data mining
machine learning
cukrzyca
algorytm
eksploracja danych
uczenie maszynowe
Opis:
Purpose: Diabetes is a chronic disease that pays for a large proportion of the nation's healthcare expenses when people with diabetes want medical care continuously. Several complications will occur if the polymer disorder is not treated and unrecognizable. The prescribed condition leads to a diagnostic center and a doctor's intention. One of the real-world subjects essential is to find the first phase of the polytechnic. In this work, basically a survey that has been analyzed in several parameters within the poly-infected disorder diagnosis. It resembles the classification algorithms of data collection that plays an important role in the data collection method. Automation of polygenic disorder analysis, as well as another machine learning algorithm. Design/methodology/approach: This paper provides extensive surveys of different analogies which have been used for the analysis of medical data, For the purpose of early detection of polygenic disorder. This paper takes into consideration methods such as J48, CART, SVMs and KNN square, this paper also conducts a formal surveying of all the studies, and provides a conclusion at the end. Findings: This surveying has been analyzed on several parameters within the poly-infected disorder diagnosis. It resembles that the classification algorithms of data collection plays an important role in the data collection method in Automation of polygenic disorder analysis, as well as another machine learning algorithm. Practical implications: This paper will help future researchers in the field of Healthcare, specifically in the domain of diabetes, to understand differences between classification algorithms. Originality/value: This paper will help in comparing machine learning algorithms by going through results and selecting the appropriate approach based on requirements.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 104, 2; 77--84
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza wybranych metod tworzenia sztucznej inteligencji na przykładzie popularnej gry w karty
Analysis of selected methods of creating artificial intelligence on the example of a popular card game
Autorzy:
Gałka, Łukasz
Dzieńkowski, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/98306.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
artificial intelligence
machine learning
algorithm efficiency evaluation
computer games
sztuczna inteligencja
uczenie maszynowe
ocena skuteczności algorytmów
gry komputerowe
Opis:
The aim of the article was to analyze selected methods of creating artificial intelligence in a popular card game. Two experiments were conducted: with a human and with a computer. The following algorithms were analyzed: random, min-max, based on a neural network, statistical and statistical with the use of “cheating” technique. The examined parameters were as follows: efficiency, execution time, number of implementation code lines, implementation time and training duration. The indicator with the greatest impact on the selection of the most optimal method was efficiency. The research has shown no difference in efficiency for the neural network-based algorithm and the statistical algorithm. In other cases, the differences in this feature were significant. The use of the “cheating” technique has increased the efficiency.
Celem artykułu była analiza wybranych metod tworzenia sztucznej inteligencji w popularnej grze w karty. Zostały przeprowadzone dwa eksperymenty: z człowiekiem oraz z komputerem. Analizie poddano algorytmy: losowy, minmax, bazujący na sieci neuronowej, statystyczny oraz statystyczny z użyciem techniki „oszukiwania”. Zbadano takie parametry jak: skuteczność, czas wykonania, liczbę linii kodu implementacji, czas implementacji oraz czas trwania treningu. Wskaźnikiem mającym największy wpływ na wybór najbardziej optymalnej metody była skuteczność. Badania wykazały brak różnic w skuteczności dla algorytmu bazującego na sieci neuronowej i algorytmu statystycznego. W pozostałych przypadkach różnice tej cechy były istotne. Użycie techniki „oszukiwania” zwiększyło skuteczność.
Źródło:
Journal of Computer Sciences Institute; 2020, 16; 233-240
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
Skin lesion features analysis for malignant melanoma classification
Autorzy:
Mikołajczyk, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268540.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytm ewolucyjny
uczenie maszynowe
sieci neuronowe
systemy wspomagania decyzji
evolutionary algorithm
neural networks
decision support system
machine learning
Opis:
Pomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak najlepszej dokładności klasyfikacji znamion skórnych. Algorytm zwraca optymalny zestaw cech opisujących obraz dermatoskopowy wraz z proponowaną architekturą sieci neuronowej. Uzyskano dokładność równą 85,83%, swoistość równą 79,07% oraz czułość równą 92,60%.
Despite the dynamic development of machine learning methods, automatic analysis of skin lesions is still open issue. The following article proposes the use of an evolutionary algorithm to design, train, and to test a whole population of classifiers (artificial neural networks) and to iteratively improve them in each subsequent population, in order to achieve the best possible accuracy in the classification of skin lesions task. The algorithm returns an optimal set of features describing the dermatoscopic image together with the proposed architecture of the neural network. High classification results were obtained, in particular: accuracy equal to 85.83%, specificity 79.07% and sensitivity 92.60%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 67-70
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cost-sensitive feature selection
Selekcja cech z uwzględnieniem kosztu ich pozyskania
Autorzy:
Ciupke, K.
Powiązania:
https://bibliotekanauki.pl/articles/327830.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
selekcja cech
algorytm mrówkowy
uczenie maszynowe
sztuczna inteligencja
diagnostyka techniczna
feature selection
ant algorithm
machine learning
artificial intelligence
technical diagnostics
Opis:
The paper concerns the selection of features in the technical diagnostics domain. The author focused his attention on a wrapper approach. In this approach an application of the ant algorithm as a search engine is proposed. The proposed method of so-called ant wrapper approach is presented. The method takes advantage of cost of features, where the cost is connected with the cost of sensors. The algorithm as a pseudo-code and some results of a verification experiment are shown. The verification was carried out on data derived from an active diagnostic experiment concerning a rotating machine. The obtained results show, that the proposed method could allow to reduce the number of used sensors.
W artykule opisano metodę selekcji cech z zastosowaniem algorytmu mrówkowego. Metoda pozwala także na uwzględnienie kosztu atrybutu, przy czym jego koszt związany jest z kosztem pozyskanie sygnału diagnostycznego. W przypadku gdy sygnał ten jest już wykorzystywany uznaje się, że koszt wyznaczenia danej cechy jest pomijalnie mały. Metodę przedstawiono w postaci pseudo-kodu i zweryfikowano dla danych pochodzących z czynnego eksperymentu diagnostycznego. Uzyskane wyniki pokazują, że istnieje możliwość ograniczenia liczby stosowanych czujników.
Źródło:
Diagnostyka; 2006, 2(38); 45-48
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów przeszukiwania grafów do analizy obrazów medycznych
Analysis of medical images based on graph search algorithms
Autorzy:
Dimitrova-Grekow, T.
Dąbkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/156629.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
analiza obrazów medycznych
algorytmy przeszukiwania grafów
uczenie maszynowe
eksploracja danych
rozpoznawanie choroby
image analysis
graph search algorithm
machine learning
data mining
disease recognition
Opis:
W artykule przedstawiono wyniki testów niekonwencjonalnego zastosowania metod do przeszukiwania grafów w celu analizy obrazów powstałych z rezonansu magnetycznego głowy. Zaprezentowano GUI do automatycznej obróbki serii obrazów. Zbudowane klasyfikatory wykazały, że metoda BFS analizy plików DICOM, po odpowiednej selekcji cech, pozwala na 100% rozpoznawanie chorych na wodogłowie i ponad 90% zdrowych, co zachęca do dalszych badań i obserwacji, np. czy osoby sklasyfikowane błędnie jako chorzy, po czasie rzeczywiście nie rozwinęli tej choroby.
There are many methods for image segmentation [1, 2]: threshold, area, edge and hybrid methods. Area methods indicate groups of similar pixels form local regions [3, 4]. Edge methods detect boundaries between homogeneous segments [5, 6, 7]. In this paper we present the results of tests of unconventional implementation of graph search methods for the analysis of images generated from magnetic resonance imaging [8]. We explored the effectiveness of different approaches for dividing areas within a similar gray scale, using adapted graph search algorithms (DFS, BFS) after appropriate modification (Fig. 1). For this purpose, the Weka package (a tool for pre-processing, classification, regression, clustering and data visualization) was used [9]. A training set was generated after analyzing all the series of images from the database. First, we evaluated models created using certain algorithms and compared their efficacy (Tab. 1). This was followed by a selection of attributes (Tab. 2) and a re-evaluation of the models (Tab. 3). Comparison of the results of both evaluations showed that after selection of the relevant product attributes, you can achieve up to 100% detection of patients with hydrocephalus and over 90% proper recognition of healthy persons. This encourages further research and observation, such as whether persons wrongly classified as sick actually developed the disease in time. We designed a web application for the study, written in Windows Azure, as well as a GUI for automatic processing of a series of images (Fig. 2).
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 7, 7; 578-580
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine Learning-Aided Architectural Design for Carbon Footprint Reduction
Wspomagane uczeniem maszynowym projektowanie architektury w celu zmniejszenia śladu węglowego
Autorzy:
Płoszaj-Mazurek, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/129265.pdf
Data publikacji:
2020
Wydawca:
PWB MEDIA Zdziebłowski
Tematy:
ocena cyklu życia
optymalizacja parametryczna
ślad węglowy
uczenie maszynowe
sztuczna inteligencja
algorytm
emisja ghg
architektura zrównoważona
zbiór danych duży
life cycle assessment
parametric optimization
carbon footprint
artificial intelligence
algorithm
ghg emissions
sustainable architecture
big data
machine learning
Opis:
The built environment is considered responsible for at least 20-40% of greenhouse gases emission. The way we design may exert an impact on this percentage. A new paradigm, namely artificial intelligence, is arriving. More and more tasks are becoming automated via algorithms. How could this power be applied in order to strengthen our knowledge about the ways we design buildings? The author of the following paper presents a study in which carbon footprint yielded by a multifamily building is analysed. ML has been used to generate an extensive overview of the possible design solutions. This, in turn, made it possible to observe correlations between various parameters that resulted in a reduced carbon footprint.
Środowisko zabudowane odpowiada za co najmniej 20 do 40% emisji gazów cieplarnianych, a sposób, w jaki projektujemy, może wpłynąć na tę wartość. Coraz więcej zadań zostaje zautomatyzowanych za pomocą algorytmów. Jak możemy wykorzystać to narzędzie, aby wspomóc naszą wiedzę na temat sposobów projektowania budynków? Autor przedstawia badanie analizujące ślad węglowy budynku wielorodzinnego. Algorytm uczenia maszynowego został wykorzystany do wygenerowania obszernego przeglądu możliwych rozwiązań projektowych. Umożliwiło to zaobserwowanie korelacji między różnymi parametrami, co pozwoliło na wybór kombinacji parametrów o najniższym śladzie węglowym.
Źródło:
Builder; 2020, 24, 7; 35-39
1896-0642
Pojawia się w:
Builder
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence-powered pulse sequences in nuclear magnetic resonance and magnetic resonance imaging: historical trends, current innovations and perspectives
Autorzy:
Tokarz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/35508129.pdf
Data publikacji:
2024
Wydawca:
Radomskie Towarzystwo Naukowe
Tematy:
artificial intelligence
machine learning
evolutionary algorithm
artificial neural network
nuclear magnetic resonance
magnetic resonance imaging
pulse sequence
shaped pulse
sztuczna inteligencja
uczenie maszynowe
algorytm ewolucyjny
sztuczna sieć neuronowa
magnetyczny rezonans jądrowy
rezonans magnetyczny
sekwencja impulsów
impuls ukształtowany
Opis:
This review article explores the historical background and recent advances in the application of artificial intelligence (AI) in the development of radiofrequency pulses and pulse sequences in nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI). The introduction of AI into this field, which traces back to the late 1970s, has recently witnessed remarkable progress, leading to the design of specialized frameworks and software solutions such as DeepRF, MRzero, and GENETICS-AI. Through an analysis of literature and case studies, this review tracks the transformation of AI-driven pulse design from initial proof-of-concept studies to comprehensive scientific programs, shedding light on the potential implications for the broader NMR and MRI communities. The fusion of artificial intelligence and magnetic resonance pulse design stands as a promising frontier in spectroscopy and imaging, offering innovative enhancements in data acquisition, analysis, and interpretation across diverse scientific domains.
Źródło:
Scientiae Radices; 2024, 3, 1; 30-52
2956-4808
Pojawia się w:
Scientiae Radices
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies