Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "X-Machine" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
A machine learning-based mobile robot visual homing approach
Autorzy:
Zhu, Q.
Ji, X.
Wang, J.
Cai, C.
Powiązania:
https://bibliotekanauki.pl/articles/201706.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
robot navigation
visual homing
panoramic vision sensors
machine learning
homing performance
nawigacja robotów
panoramiczny czujnik wizyjny
uczenie maszynowe
Opis:
Visual homing enables mobile robots to move towards a previously visited location solely based on panoramic vision sensors. In this paper, a SIFT-based visual homing approach incorporating machine learning is presented. The proposed approach can reduce the impact of inaccurate landmarks on the performance, and generate more precise home direction with simple model. The effectiveness of the proposed approach is verified on both panoramic image databases and actual mobile robot, experimental results reveal that compared to some traditional visual homing methods, the proposed approach exhibits better homing performance and adaptability in both static and dynamic environments.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 5; 621-634
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multiple-instance learning with pairwise instance similarity
Autorzy:
Yuan, L.
Liu, J.
Tang, X.
Powiązania:
https://bibliotekanauki.pl/articles/330821.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiple instance learning
instance selection
similarity
support vector machine (SVM)
uczenie maszynowe
podobieństwo
metoda wektorów wspomagających
Opis:
Multiple-Instance Learning (MIL) has attracted much attention of the machine learning community in recent years and many real-world applications have been successfully formulated as MIL problems. Over the past few years, several Instance Selection-based MIL (ISMIL) algorithms have been presented by using the concept of the embedding space. Although they delivered very promising performance, they often require long computation times for instance selection, leading to a low efficiency of the whole learning process. In this paper, we propose a simple and efficient ISMIL algorithm based on the similarity of pairwise instances within a bag. The basic idea is selecting from every training bag a pair of the most similar instances as instance prototypes and then mapping training bags into the embedding space that is constructed from all the instance prototypes. Thus, the MIL problem can be solved with the standard supervised learning techniques, such as support vector machines. Experiments show that the proposed algorithm is more efficient than its competitors and highly comparable with them in terms of classification accuracy. Moreover, the testing of noise sensitivity demonstrates that our MIL algorithm is very robust to labeling noise.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 567-577
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting housing sale prices in Germany by application of machine learning models and methods of data exploration
Przewidywanie cen mieszkań w Niemczech z wykorzystaniem modeli uczenia maszynowego i metod eksploracji danych
Autorzy:
Kim, Chong Dae
Bedorf, Nils
Powiązania:
https://bibliotekanauki.pl/articles/32041024.pdf
Data publikacji:
2024
Wydawca:
Szkoła Główna Handlowa w Warszawie
Tematy:
uczenie maszynowe
Niemcy
ekonomia
zbiór danych o rynku nieruchomości
big data
prognozowanie cen
machine learning
Germany
economics
real estate dataset
sale price prediction
Opis:
The prediction of real estate prices is a popular problem in the field of machine learning and often demonstrated in literature. In contrast to other approaches, which regularly focus on the US market, this paper investigates the biggest, German real estate dataset, with more than 1.5 million unique samples and more than 20 features. In this paper we implement and compare different machine learning models in respect to performance and interpretability to give insight in the most important properties, which contribute to the sale price. Our experiments suggest that the prediction of sale prices in a realworld scenario is achievable yet limited by the quality of data rather than quantity. The results show promising prediction scores but are also heavily dependent on the location, which leaves room for further evaluation.
Przewidywanie cen nieruchomości jest popularnym problemem w dziedzinie uczenia maszynowego i często przedstawianym w literaturze. W przeciwieństwie do innych podejść, które koncentrują się na rynku amerykańskim, niniejszy artykuł bada największy niemiecki zbiór danych dotyczących nieruchomości, zawierający ponad 1,5 mln unikatowych próbek i ponad 20 cech. W tym artykule wdrażamy i porównujemy różne modele uczenia maszynowego pod względem wydajności i możliwości interpretacji, aby uzyskać wgląd w najważniejsze
Źródło:
Kwartalnik Nauk o Przedsiębiorstwie; 2024, 71, 1; 107-122
1896-656X
Pojawia się w:
Kwartalnik Nauk o Przedsiębiorstwie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble of feature extraction methods to improve the structural damage classification in a wind turbine foundation
Autorzy:
Leon-Medina, Jersson X.
Parés, Núria
Anaya, Maribel
Tibaduiza, Diego A.
Pozo, Francesc
Powiązania:
https://bibliotekanauki.pl/articles/27311417.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
structural health monitoring
wind turbine foundation
damage classification
machine learning
feature extraction
XGBoost
monitorowanie stanu konstrukcji
fundament turbiny wiatrowej
klasyfikacja uszkodzeń
uczenie maszynowe
ekstrakcja cech
Opis:
The condition monitoring of offshore wind power plants is an important topic that remains open. This monitoring aims to lower the maintenance cost of these plants. One of the main components of the wind power plant is the wind turbine foundation. This study describes a data-driven structural damage classification methodology applied in a wind turbine foundation. A vibration response was captured in the structure using an accelerometer network. After arranging the obtained data, a feature vector of 58 008 features was obtained. An ensemble approach of feature extraction methods was applied to obtain a new set of features. Principal Component Analysis (PCA) and Laplacian eigenmaps were used as dimensionality reduction methods, each one separately. The union of these new features is used to create a reduced feature matrix. The reduced feature matrix is used as input to train an Extreme Gradient Boosting (XGBoost) machine learning-based classification model. Four different damage scenarios were applied in the structure. Therefore, considering the healthy structure, there were 5 classes in total that were correctly classified. Five-fold cross validation is used to obtain a final classification accuracy. As a result, 100% of classification accuracy was obtained after applying the developed damage classification methodology in a wind-turbine offshore jacket-type foundation benchmark structure.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 3; art. no. e144606
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Digital population and housing census - the experience of Serbia
Cyfrowy powszechny spis ludności i mieszkań – przykład Serbii
Autorzy:
Kovačević, Miladin
Nikić, Mira
Josipović, Branko
Lakčević, Snežana
Pantelić, Vesna
Mitrović, Nevena
Kolaković, Adil
Korovićh, Petar
Powiązania:
https://bibliotekanauki.pl/articles/28408260.pdf
Data publikacji:
2023-10-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
2022 Census of Population
Households and Dwellings
digital census
geospatial data
monitoring system
machine learning
administrative data
record linkage
imputation
statistical population register
Serbia
Powszechny Spis Ludności
Gospodarstw Domowych i Mieszkań 2022
spis cyfrowy
dane geoprzestrzenne
system monitorujący
uczenie maszynowe
dane administracyjne
łączenie rekordów
imputacja
statystyczna ewidencja ludności
Opis:
The aim of the paper is to present the experience of the Republic of Serbia in conducting the 2022 Census of Population, Households and Dwellings, focusing on the employment, legal framework and financing of the census as well as on its successful implementation. It discusses strategic decisions on data collection and the integration of information technology - including geospatial data, data collection techniques, machine learning, record linkage and monitoring system - to overcome the challenges posed by the census. The paper addresses the census undercoverage, explores the use of administrative data for item imputation, and examines the development of a statistical population register. The study demonstrates the benefits of adopting a digital-census approach: significant improvement of accuracy, cost reduction and acquired expeditiousness. The Statistical Office of the Republic of Serbia conducted a digital census combined with traditional methods, excluding self-enumeration, along with the use of administrative data for item imputation, and recommends this approach as the most effective way to obtain precise and comprehensive information about a population, including its demographic characteristics, geographic distribution and overall size.
Celem artykułu jest przedstawienie doświadczeń Republiki Serbii w zakresie organizacji Powszechnego Spisu Ludności, Gospodarstw Domowych i Mieszkań 2022, ze szczególnym uwzględnieniem zagadnień dotyczących zatrudnienia personelu, ram prawnych i finansowania tego badania oraz warunków jego udanej realizacji. Praca skupia się na strategicznych decyzjach w sprawie zbierania danych oraz zastosowania technik informatycznych, takich jak: wykorzystanie danych przestrzennych, cyfrowe metody uzyskiwania danych, uczenie maszynowe, łączenie rekordów czy system monitorujący, mających na celu sprostanie wyzwaniom związanym ze spisem. Autorzy poruszają także kwestie niedostatecznego pokrycia spisu oraz wykorzystania rejestrów administracyjnych do imputacji danych. Ponadto poświęcają uwagę opracowaniu i udoskonalaniu statystycznej ewidencji ludności, dokładności danych, obniżeniu kosztów i zwiększeniu efektywności badania. Główny Urząd Statystyczny Republiki Serbii przeprowadził spis powszechny w sposób cyfrowy, łącząc ten mechanizm z metodami tradycyjnymi (z wyłączeniem samospisu) i posiłkując się rejestrami administracyjnymi w celu imputacji danych. Metoda ta jest w artykule rekomendowana jako najefektywniejszy sposób uzyskania precyzyjnych i wyczerpujących informacji na temat populacji, w tym jej charakterystyki demograficznej, rozmieszczenia przestrzennego i liczebności.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2023, 68, 10; 49-70
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies