Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "deep" wg kryterium: Wszystkie pola


Tytuł:
Theory I: Deep networks and the curse of dimensionality
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/200623.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep network
shallow network
convolutional neural network
function approximation
deep learning
sieci neuronowe
aproksymacja funkcji
uczenie głębokie
Opis:
We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 761-773
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected technical issues of deep neural networks for image classification purposes
Autorzy:
Grochowski, Michał
Kwasigroch, A.
Mikołajczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/200871.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep neural network
deep learning
image classification
batch normalization
transfer learning
dropout
sieć neuronowa
klasyfikacja obrazów
normalizacja
transfer nauki
uczenie głębokie
Opis:
In recent years, deep learning and especially deep neural networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the convolutional neural networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good generalization abilities. Therefore, a number of methods have been proposed by the researchers to deal with these problems. In this paper, we present the results of applying different, recently developed methods to improve deep neural network training and operating. We decided to focus on the most popular CNN structures, namely on VGG based neural networks: VGG16, VGG11 and proposed by us VGG8. The tests were conducted on a real and very important problem of skin cancer detection. A publicly available dataset of skin lesions was used as a benchmark. We analyzed the influence of applying: dropout, batch normalization, model ensembling, and transfer learning. Moreover, the influence of the type of activation function was checked. In order to increase the objectivity of the results, each of the tested models was trained 6 times and their results were averaged. In addition, in order to mitigate the impact of the selection of learning, test and validation sets, k-fold validation was applied.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 2; 363-376
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theory II: Deep learning and optimization
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/201787.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
convolutional neural networks
loss surface
optimization
uczenie głębokie
sieć neuronowa
optymalizacja
Opis:
The landscape of the empirical risk of overparametrized deep convolutional neural networks (DCNNs) is characterized with a mix of theory and experiments. In part A we show the existence of a large number of global minimizers with zero empirical error (modulo inconsistent equations). The argument which relies on the use of Bezout theorem is rigorous when the RELUs are replaced by a polynomial nonlinearity. We show with simulations that the corresponding polynomial network is indistinguishable from the RELU network. According to Bezout theorem, the global minimizers are degenerate unlike the local minima which in general should be non-degenerate. Further we experimentally analyzed and visualized the landscape of empirical risk of DCNNs on CIFAR-10 dataset. Based on above theoretical and experimental observations, we propose a simple model of the landscape of empirical risk. In part B, we characterize the optimization properties of stochastic gradient descent applied to deep networks. The main claim here consists of theoretical and experimental evidence for the following property of SGD: SGD concentrates in probability – like the classical Langevin equation – on large volume, ”flat” minima, selecting with high probability degenerate minimizers which are typically global minimizers.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 775-787
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of a dual stage deep rain streak removal convolution neural network module with a modified deep residual dense network
Autorzy:
Jayaraman, Thiyagarajan
Chinnusamy, Shankar
Powiązania:
https://bibliotekanauki.pl/articles/2055158.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
single image deraining
deep learning
modified residual dense network
PyTorch
obraz pojedynczy
uczenie głębokie
sieć gęsta
Opis:
The visual appearance of outdoor captured images is affected by various weather conditions, such as rain patterns, haze, fog and snow. The rain pattern creates more degradation in the visual quality of the image due to its physical structure compared with other weather conditions. Also, the rain pattern affects both foreground and background image information. The removal of rain patterns from a single image is a critical process, and more attention is given to remove the structural rain pattern from real-time rain images. In this paper, we analyze the single image deraining problem and present a solution using the dual stage deep rain streak removal convolutional neural network. The proposed single image deraining framework primarily consists of three main blocks: a derain streaks removal CNN (derain SRCNN), a modified residual dense block (MRDB), and a six-stage scale feature aggregation module (3SFAM). The ablation study is conducted to evaluate the performance of various modules available in the proposed deraining network. The robustness of the proposed deraining network is evaluated over the popular synthetic and real-time data sets using four performance metrics such as the peak signal-to-noise ratio (PSNR), the feature similarity index (FSIM), the structural similarity index measure (SSIM), and the universal image quality index (UIQI). The experimental results show that the proposed framework outperforms both synthetic and real-time images compared with other state-of-the-art single image deraining approaches. In addition, the proposed network takes less running and training time.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 1; 111--123
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning: theory and practice
Autorzy:
Cichocki, A.
Poggio, T.
Osowski, S.
Lempitsky, V.
Powiązania:
https://bibliotekanauki.pl/articles/202346.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
networks
theory
practice
uczenie głębokie
sieci
teoria
praktyka
Opis:
This Special Section of the Bulletin of the Polish Academy of Sciences on Technical Sciences is devoted to theoretical aspects of deep machine learning as well as practical applications in some areas of signal and image processing, particularly in bioengineering.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 757-759
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie głębokie w diagnostyce medycznej
Deep Learning in Medical Diagnosis
Autorzy:
Antczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/404011.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
sieci neuronowe
diagnostyka medyczna
uczenie głębokie
neural networks
medical diagnosis
deep learning
Opis:
W pracy przeanalizowano perspektywy zastosowania metod uczenia głębokiego w diagnostyce medycznej. Jedną z kluczowych cech uczenia głębokiego jest zdolność do wyodrębniania złożonych wzorców o strukturze hierarchicznej. Wzorce takie występują również w diagnostyce, jako tak zwane diamenty diagnostyczne. Zastosowanie głębokich sieci neuronowych mogłoby poprawić jakość klasyfikatorów wykrywających choroby na podstawie objawów. Dodatkowo umożliwiłoby to sterowanie czułoscią i swoistością klasyfikatorów.
In this paper we analyze perspectives of applying deep learning methods in a field of medical diagnosis. One of key features of deep learning is ability to extract complex, hierarchical patterns. Such patterns are present also in a medical diagnosis, where they are known as diagnostic diamonds. Applying deep neural networks could increase performance of medical classifiers. Moreover, it would allow to adjust sensitivity and specificity of classifiers.
Źródło:
Symulacja w Badaniach i Rozwoju; 2016, 7, 3-4; 83-88
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An automated driving strategy generating method based on WGAIL–DDPG
Autorzy:
Zhang, Mingheng
Wan, Xing
Gang, Longhui
Lv, Xinfei
Wu, Zengwen
Liu, Zhaoyang
Powiązania:
https://bibliotekanauki.pl/articles/2055167.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
automated driving system
deep learning
deep reinforcement learning
imitation learning
deep deterministic policy gradient
system jezdny
uczenie głębokie
uczenie przez naśladowanie
Opis:
Reliability, efficiency and generalization are basic evaluation criteria for a vehicle automated driving system. This paper proposes an automated driving decision-making method based on the Wasserstein generative adversarial imitation learning–deep deterministic policy gradient (WGAIL–DDPG(λ)). Here the exact reward function is designed based on the requirements of a vehicle’s driving performance, i.e., safety, dynamic and ride comfort performance. The model’s training efficiency is improved through the proposed imitation learning strategy, and a gain regulator is designed to smooth the transition from imitation to reinforcement phases. Test results show that the proposed decision-making model can generate actions quickly and accurately according to the surrounding environment. Meanwhile, the imitation learning strategy based on expert experience and the gain regulator can effectively improve the training efficiency for the reinforcement learning model. Additionally, an extended test also proves its good adaptability for different driving conditions.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 461--470
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Big data significance in remote medical diagnostics based on deep learning techniques
Autorzy:
Kwaśniewska, A.
Giczewska, A.
Rumiński, J.
Powiązania:
https://bibliotekanauki.pl/articles/1940561.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska
Tematy:
telemedicine
deep learning
multimedia databases
big data
telemedycyna
uczenie głębokie
multimedialne bazy danych
duże zbiory danych
Opis:
In this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential challenges of using, storing and transferring sensitive patient data are discussed.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2017, 21, 4; 309-319
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozpoznawanie obiektów przez głębokie sieci neuronowe
Object classification with deep neural networks
Autorzy:
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268601.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
sztuczna inteligencja
przetwarzanie obrazu
deep learning
neural networks
artificial intelligence
image processing
Opis:
W referacie zaprezentowane zostaną wyniki badań nad rozpoznawaniem obiektów w różnych warunkach za pomocą głębokich sieci neuronowych. Przeanalizowano działanie dwóch struktur – ResNet50 oraz VGG19. Systemy rozpoznawania obrazu wytrenowano oraz przetestowano na reprezentatywnej, bazie zawierającej 25 tys. zdjęć psów oraz kotów, która znacznie upraszcza analizowanie działania systemów ze względu na łatwość interpretacji zdjęć przez człowieka. Zbadano wpływ pojawienia się nietypowych zdjęć na wynik klasyfikacji. Ponadto przeanalizowano zdjęcia niepoprawnie sklasyfikowane i porównano je z interpretacjami człowieka. Uzyskano bardzo wysokie wyniki klasyfikacji. Do oceny systemów użyto miar statystycznych takich jak: dokładność, czułość, swoistość, krzywe ROC.
Deep neural networks are modern algorithms from the family of artificial intelligence, that are widely used these days for task of an image analysis. In this paper, we present results of research on deep neural network for image recognition. We tested 2 different neural architectures, namely: modified VGG19, ResNet50. In order to improve the classification results we employed two methods called dropout and transfer learning. The systems were trained on the dataset containing 22 000 training images and 3000 test images. The dataset used contains different pictures of animals (cats and dogs). The dataset of animals make analyses of network performance easier, because they are easy to interpret by human. The employed systems were tested qualitatively and quantitatively. The influence of atypical inputs were examined, also. Moreover, the analysis of improperly classified images was performed. We achieved high classification results. In order to evaluate the classification performance we utilized the following set of statistical measures: accuracy, specificity, sensitivity and ROC curves.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 63-66
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast multispectral deep fusion networks
Autorzy:
Osin, V.
Cichocki, A.
Burnaev, E.
Powiązania:
https://bibliotekanauki.pl/articles/200648.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multispectral imaging
data fusion
deep learning
convolutional network
object detection
image segmentation
obrazowanie wielospektralne
fuzja danych
uczenie głębokie
sieci splotowe
wykrywanie obiektów
segmentacja obrazu
Opis:
Most current state-of-the-art computer vision algorithms use images captured by cameras, which operate in the visible spectral range as input data. Thus, image recognition systems that build on top of those algorithms can not provide acceptable recognition quality in poor lighting conditions, e.g. during nighttime. Another significant limitation of such systems is high demand for computational resources, which makes them impossible to use on low-powered embedded systems without GPU support. This work attempts to create an algorithm for pattern recognition that will consolidate data from visible and infrared spectral ranges and allow near real-time performance on embedded systems with infrared and visible sensors. First, we analyze existing methods of combining data from different spectral ranges for object detection task. Based on the analysis, an architecture of a deep convolutional neural network is proposed for the fusion of multi-spectral data. This architecture is based on the single shot multi-box detection algorithm. Comparison analysis of the proposed architecture with previously proposed solutions for the multi-spectral object detection task shows comparable or better detection accuracy with previous algorithms and significant improvement of the running time on embedded systems. This study was conducted in collaboration with Philips Lighting Research Lab and solutions based on the proposed architecture will be used in image recognition systems for the next generation of intelligent lighting systems. Thus, the main scientific outcomes of this work include an algorithm for multi-spectral pattern recognition based on convolutional neural networks, as well as a modification of detection algorithms for working on embedded systems.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 875-889
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimating the distance to an object from grayscale stereo images using deep learning
Autorzy:
Kulawik, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/2202043.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
estimating distance
stereo vision
convolutional neural network
deep learning
szacowanie odległości
widzenie stereoskopowe
konwolucyjne sieci neuronowe
uczenie głębokie
Opis:
This article presents an innovative proposal for estimating the distance between an autonomous vehicle and an object in front of it. Such information can be used, for example, to support the process of controlling an autonomous vehicle. The primary source of information in research is monochrome stereo images. The images were made in compliance with the laws of the canonical order. The developed convolutional neural network model was used for the estimation. A proprietary dataset was developed for the experiments. The analysis was based on the phenomenon of disparity in stereo images. As a result of the research, a correctly trained model of the CNN network was obtained in six variants. High accuracy of distance estimation was achieved. This publication describes an original proposal for a hybrid blend of digital image analysis, stereo-vision, and deep learning for engineering applications.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 4; 60--72
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie uczenia głębokiego w tłumaczeniu komputerowym
Application of deep learning in computer translation
Autorzy:
Handzel, Zbigniew
Gajer, Mirosław
Grabiński, Tadeusz
Luty, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/2147416.pdf
Data publikacji:
2021-12-06
Wydawca:
Wyższa Szkoła Ekonomii i Informatyki w Krakowie
Tematy:
sztuczna inteligencja
przekład komputerowy
sieci neuronowe
uczenie głębokie
artificial intelligence
computer translation
neural
networks
deep learning
Opis:
Przekład komputerowy jest najstarszym i zarazem najbardziej doniosłym zagadnieniem zaliczanym do obszaru sztucznej inteligencji. Pomysł zastosowania komputerów do tłumaczenia tekstów zapisanych w języku naturalnym jest prawie tak stary, jak sam wynalazek komputera. Pierwotnie rzecz wydawała się łatwa do realizacji i oczekiwano, że za kilkanaście lat zawód tłumacza ostatecznie zaniknie, ponieważ tego rodzaju prace będą wykonywały wyłącznie maszyny cyfrowe. Potrzeba było jednak ponad 60 lat intensywnych badań, aby marzenie to mogło się urzeczywistnić w czasach nam współczesnych. Przełomem w badaniach nad przekładem komputerowym było zastosowanie technik obliczeniowych bazujących na sztucznych sieciach neuronowych z wykorzystaniem algorytmów uczenia głębokiego. W 2017 roku uruchomiony został serwis tłumaczeniowy DeepL, który jest programem komputerowym wykorzystującym uczenie głębokie w translacji automatycznej. Rozważany program zapewnia przekład o bardzo wysokiej jakości pomiędzy dowolnie wybraną parą spośród ponad 20 języków. Między innymi program ten umożliwia tłumaczenie z i na język polski. W artykule przedstawiono krótką historię badań nad przekładem komputerowym, omówiono główne trudności, które należało przezwyciężyć na drodze do budowy tłumaczy komputerowych, oraz omówiono podstawowe podejścia wykorzystywane w translacji automatycznej. Na zakończenie zaprezentowano interesujące wyniki eksperymentów przeprowadzonych z udziałem programu DeepL, które dowodzą jego bardzo wysokiej skuteczności w tłumaczeniu pomiędzy dowolnie wybraną parą języków, niezależnie od stopnia ich genetycznego pokrewieństwa.
Computer-aided translation is the oldest and at the same time the most prominent subject in the field of artificial intelligence. The idea of using computers to translate texts written in natural language is almost as old as the invention of the computer itself. At first it seemed easy to implement and it was expected that in a decade or so the profession of translator would finally disappear because only digital machines would do this kind of work. However, it took more than 60 years of intensive research for this dream to become a reality in modern times. A breakthrough in computer translation research was the application of computational techniques based on artificial neural networks using deep learning algorithms. In 2017, the translation service DeepL was launched, which is a computer program using deep learning in automatic translation. The program under consideration provides translation of very high quality between any pair of more than 20 languages. Among other things, the programme enables translation from and into Polish. The article presents a brief history of research on computer-aided translation, discusses the basic difficulties that had to be overcome on the way to building computer-aided translators, and discusses the basic approaches used in automatic translation. Finally, interesting results of experiments carried out with the program DeepL are presented, which prove its very high efficiency in translation between any pair of languages, regardless of the degree of their genetic affinity
Źródło:
Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie; 2021, 17; 71-92
1734-5391
Pojawia się w:
Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnozowanie stanu retinopatii cukrzycowej przy pomocy głębokich sieci neuronowych
Classification of the stage of the disease by deep neural networks
Autorzy:
Jarzembiński, B.
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/267831.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
retinopatia cukrzycowa
deep learning
neural networks
diabetic retinopathy
Opis:
W referacie opisano problem wykrywania oraz klasyfikacji stanu retinopatii cukrzycowej ze zdjęć dna oka przy pomocy głębokich sieci neuronowych. Retinopatia cukrzycowa jest chorobą oczu często występującą u osób z cukrzycą. Nieleczona prowadzi do uszkodzenia wzroku, a nawet ślepoty. W pracy badawczej opracowano system wykrywania retinopatii cukrzycowej na podstawie zdjęć dna oka. Opracowana sieć neuronowa przypisuje stan choroby w 5 stopniowej skali – od braku choroby do najbardziej zaawansowanego stanu choroby. Zaproponowano specjalny system kodowania klas w celu uchwycenia wielkości różnicy pomiędzy rzeczywistymi a predykowanymi stanami choroby. Uzyskano wysokie wyniki klasyfikacji na zbiorze testowym. W celu oceny skuteczności działania systemu wykorzystano miary statystyczne takie jak ważona Kappa i dokładność.
In the paper we described computer aided detection system of diabetic retinopathy based on fundus photos of retina. Diabetic retinopathy is an eye disease associated with diabetes. Non-treated diabetic retinopathy leads to sight degeneration and even blindness. Early detection is crucial due to provide effective treatment. Currently, diabetic retinopathy detection is time consuming process, done manualy by medical specialist. The disease is dangerous issue in places where the availability of phisicians is limited. We employed the computer system that detect diabetic retinopathy and assess a stage of the disease based on retinal photo of fundus. We used one of the best image classification system – deep neural networks. Employed system assess the stage of the disease in 5 level scale – from absence of disease to the most severe stage of disease. We employed transfer learning and data augmentation to enhance classification result. Moreover we proposed special class coding system to catch the difference between real and predicted stage of disease. We tested employed system using different statistical measures like accuracy, sensitivity, specificity and Kappa score.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 37-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning based Tamil Parts of Speech (POS) tagger
Autorzy:
Anbukkarasi, S.
Varadhaganapathy, S.
Powiązania:
https://bibliotekanauki.pl/articles/2086879.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
POS tagging
part of speech
deep learning
natural language processing
BiLSTM
Bi-directional long short term memory
tagowanie POS
części mowy
uczenie głębokie
przetwarzanie języka naturalnego
Opis:
This paper addresses the problem of part of speech (POS) tagging for the Tamil language, which is low resourced and agglutinative. POS tagging is the process of assigning syntactic categories for the words in a sentence. This is the preliminary step for many of the Natural Language Processing (NLP) tasks. For this work, various sequential deep learning models such as recurrent neural network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Bi-directional Long Short-Term Memory (Bi-LSTM) were used at the word level. For evaluating the model, the performance metrics such as precision, recall, F1-score and accuracy were used. Further, a tag set of 32 tags and 225 000 tagged Tamil words was utilized for training. To find the appropriate hidden state, the hidden states were varied as 4, 16, 32 and 64, and the models were trained. The experiments indicated that the increase in hidden state improves the performance of the model. Among all the combinations, Bi-LSTM with 64 hidden states displayed the best accuracy (94%). For Tamil POS tagging, this is the initial attempt to be carried out using a deep learning model.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138820, 1--6
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2173603.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; art. no. e136737
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies