Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "solar flare" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Chronology of Formation of Solar Radio Burst Types III and V Associated with Solar Flare Phenomenon on 19th September 2011
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/411656.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar radio burst
solar flare
type III
type V
CALLISTO
Opis:
The formation of two different solar bursts, type III and V in one solar flare event is presented. Both bursts are found on 19th September 2011 associated with C-class flares on active region 1295. From the observation, we believed that the mechanism of evolution the bursts play an important role in the event. It is found that type V burst appeared in five minutes after type III. There are a few active regions on the solar disk but most are magnetically simple and have remained rather quiet. An interpretation of this new result depends critically on the number of sunspots and the role of active region 1295. Sunspot number is increased up to 144 with seven sunspots can be observed. During that event, the speed of solar wind exceeds 433.8 km/second with 2.0 g/cm3 density of protons in the solar corona. Currently, radio flux is also high up to 150 SFU. The solar flare type C6 is continuously being observed in the X-ray region for 24 hours since 1541 UT and a maximum C1 is detected on 1847 UT. Although the sources of both bursts are same, the direction and ejection explode differ.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 5; 32-42
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
First Light Detection of A Single Solar Radio Burst Type III Due To Solar Flare Event
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411677.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar flare
low frequency
radio wavelength
solar burst
type III
CALLISTO
Opis:
The eruption mechanism of solar flares and type III are currently an extremely active area of research, especially during the solar cycle is towards maximum. In this case, the total energy of solar burst type III is of the order of solar flare with the explosion of the energy can up to 1015 ergs. The solar flare event is one of the most spectacular explosions that still be on-going study in the solar physics world. This event occurred at 2:000 UT on 15th April 2012 is due to the explosion of the magnetic energy in from the chromosphere and converted into the heating, mass motion and particle acceleration which can be detected by solar radio burst type III. In this work, we will highlight our first light detection of very tiny solar radio burst type III, which has been observed at the National Space Centre, Banting, Selangor detected by the Compound Low Cost Low Frequency Transportable Observatories (CALLISTO) system at 5:53:23. The region of the data is from 150 − 400 MHz in radio region. This burst is drifted from 150 MHz till 260 MHz. It represents a total energy of 6.2035 × 10-7 eV − 1.0753 × 10-6 eV. This fast drift burst is a continuity of the acceleration of the particles which is intermittent, and can be observed since the explosion of the solar flare. Although the burst is very tiny, it is still significant because this burst is the first detection of a single type III burst from our site. Still, the acceleration of the particles can be detected from Earth in the radio region within 3 hours period of observation at the post stage of solar flare.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 11, 1; 51-58
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probability of Solar Flares Turn Out to Form a Coronal Mass Ejections Events Due to the Characterization of Solar Radio Burst Type II and III
Autorzy:
Hamidi, Z. S.
Powiązania:
https://bibliotekanauki.pl/articles/412360.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar flare
Coronal Mass Ejection
solar burst
type II
type III
space Feather
Opis:
The solar flare and Coronal Mass Ejections (CMEs) are well known as one of the most massive eruptions which potentially create major disturbances in the interplanetary medium and initiate severe magnetic storms when they collide with the Earth‟s magnetosphere. However, how far the solar flare can contribute to the formation of the CMEs is still not easy to be understood. These phenomena are associated with II and III burst it also divided by sub-type of burst depending on the physical characteristics and different mechanisms. In this work, we used a Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy in Transportable Observatories (CALLISTO) system. The aim of the present study is to reveal dynamical properties of solar burst type II and III due to several mechanisms. Most of the cases of both solar radio bursts can be found in the range less that 400 MHz. Based on solar flare monitoring within 24 hours, the CMEs that has the potential to explode will dominantly be a class of M1 solar flare. Overall, the tendencies of SRBT III burst form the solar radio burst type III at 187 MHz to 449 MHz. Based on solar observations, it is evident that the explosive, short time-scale energy release during flares and the long term, gradual energy release expressed by CMEs can be reasonably understood only if both processes are taken as common and probably not independent signatures of a destabilization of pre-existing coronal magnetic field structures. The configurations of several active regions can be sourced regions of CMEs formation. The study of the formation, acceleration and propagation of CMEs requires advanced and powerful observational tools in different spectral ranges as many „stages‟ as possible between the photosphere of the Sun and magnetosphere of the Sun and magnetosphere of the Earth. In conclusion, this range is a current regime of solar radio bursts during CMEs events.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 16; 1-85
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Occurrences Rate of Type II and III Solar Radio Bursts at Low Frequency Radio Region 45 − 870 MHz
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412187.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst
type II
type III
solar flare
Coronal Mass Ejections
CMEs
Opis:
Observations of type II and III solar bursts indicate that while type III bursts may appear at any altitude, from the very low corona into interplanetary space, type II solar bursts do not act the same way. This work focuses on recent observations in the radio region on the low frequency region from 45 MHz to 870 MHz. Our analysis employed the accuracy of the daily solar burst measurements of e-CALLISTO network. It was found that solar burst type II explode quite minimum with 1-2 events from 2006 - 2010. However, the data 2011 for solar burst type II increases drastically with 16 events has been recorded. The occurrences of Coronal Mass Ejections (CMEs) events are also increasing up to four times in 2011. Most of the both events can be observed in the range of 150 MHz till 500 MHz. Overall, we can say that the range of photon energy for solar burst type III is between 7.737 x 10-7 eV to 1.569 x 10-6 eV. In the case of solar burst type II, the distribution of energy is much smaller with 1.596 x 10-6 eV to 6.906 x 10-6 eV. Detailed investigation of solar burst will concern the 2011 data seem to show a significant trend for both types. We showed that the increasing of both solar burst events via years implies directing an increasing of solar activities including sunspot number, solar flare and Coronal Mass Ejections (CMEs) events. It is expected that both types will increase gradually in the beginning of 2014.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 18; 103-112
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of the Electron Density and Drift Rate of Solar Burst Type III During 13th of May 2015
Autorzy:
Ali, M. O.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192997.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
radio region
solar burst
solar flare
type III
Opis:
During 13th of May 2015, the solar wind is very high velocity, which is 733 kms-1 as compared to 367.5 kms-1. It is believed that the plasma–magnetic field interactions in the solar corona can produce suprathermal electron populations over periods from tens of minutes to several hours, and the interactions of wave-particle and wave-wave lead to characteristic fine structures of the emission. An intense and broad solar radio burst type II was recorded by CALLISTO spectrometer from 20-85 MHz. Using data from a the Blein observatory, the complex structure of solar burst type III can also be found in the early stage of the formation of type III solar burst type event due to active region AR 12339. The drift rate of solar burst type III exceeds 1.0 MHz/s with 6.318 x1012 e/m3 a density of electron in the solar corona. There were also 2 groups of solar radio burst type III were observed. This CME was detected at 08:36 UT which is 1and ½ hour after the solar burst detected. This event shows a strong radiation in radio region, but not in X-ray region.
Źródło:
World Scientific News; 2016, 31; 1-11
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies